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1 Introduction

Understanding the forces behind technology diffusion is important in several areas of eco-

nomics.1 While the literature has studied the role of learning in shaping adoption processes,

less is known about how the process of diffusion is shaped by network effects. We develop

a dynamic model of technology adoption to study the role of strategic complementarities in

the diffusion of a technology. The model allows us to analyze the efficiency of the equilibria

and discuss optimal policy interventions.

Many technologies feature strategic complementarities, but in particular, we are interested

in the diffusion of new means of payments, which have been recently propelled by digitization

Auer et al. (2020); Carapella and Flemming (2020). A central feature of our analysis is the

presence of network effects, which we see as an inherent property of payment instruments:

the benefits of a particular instrument are larger if it is used by more people. The applied

literature studying technology adoption, such as Mansfield (1961), has long recognized the

presence of spillovers, whereby the probability that a firm will introduce a new technique is

an increasing function of the proportion of firms already using it.

Progress in this research area has been hindered by the lack of detailed data on technol-

ogy diffusion and by the challenges that arise when modeling adoption dynamically—a large

state space, non-linear decisions, multiple steady states, and multiple equilibria. We present

a simple model featuring network effects and fully fledged dynamic decisions: the current

decision to adopt depends on the whole path of future adoptions. The model features the

possibility of multiple equilibria as well as multiple steady states. We discuss equilibrium

existence and discuss its local stability. We characterize the planner’s problem and its im-

plementation through subsidies. We use the model to study the diffusion of SINPE, a digital

platform developed and administered by the Central Bank of Costa Rica.2 The platform was

launched in May 2015 and over 60% of the adult population uses the app in 2021; over 10%

of the country’s GDP is transacted through SINPE. This is a pertinent application of the

theory because payment technologies intuitively feature strong network complementarities.

In fact, we leverage a battery of granular administrative datasets to characterize adoption

patterns and to document the presence of strong complementarities in adoption.

The model assumes the flow benefits of using the technology at time t depend on the

number of agents who have already adopted the technology, N(t), and on an idiosyncratic

persistent random component, x(t). Adoption entails a fixed cost and agents choose when

to adopt taking the aggregate path of adoption as given. The model also includes an inten-

1See, for instance, Parente and Prescott (1994); Comin and Hobijn (2010); Stokey (2020).
2More precisely, the app is called “SINPE movil,” although throughout we will be referring to it as

“SINPE”, which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish).
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sive margin for the usage of the technology. We show that when the idiosyncratic benefits

are random the equilibrium features gradual adoption through a simple mechanism: agents

wait for others to adopt.3 This differs from previous contributions, discussed below, where

gradualism is either absent, exogenously assumed e.g. by means of staggered adoption op-

portunities, or due to learning. While gradualism could also be generated (or amplified) by

a learning mechanism, we see strategic externalities as a key inherent feature of means of

payment, which motivates our interest in this particular problem.4

The optimal adoption rule is given by a time-dependent threshold value, denoted by

x̄(t), such that adoption is optimal if x(t) > x̄(t). We assume that the economy starts with

an initial measure of agents that have adopted the technology. Aggregation of the optimal

adoption rule across agents yields a path for the fraction of agents that adopt the technology

at each time t, N(t). The equilibrium has a classic fixed point structure: the optimal decision

path (x̄) depends on the aggregate path (N), and viceversa.

We obtain several theoretical results. First, we establish monotonicity of the optimal

decision rules and of the aggregation to study the set of equilibrium paths. As expected,

given the strategic complementarities, the equilibrium set is a lattice i.e. the equilibrium

paths can be ordered in terms of their intensity of adoption. This means that when there

is more than one equilibrium their paths do not cross. Second, we obtain a comparative

static result with respect to the initial measure of adopters and the strength of strategic

complementarities. We show that there is a critical mass N such that, if the initial measure

of adopters is below N , then there is an equilibrium where no one will adopt in the future.

Third, we show that besides the steady state with no adoption the model has two additional

interior steady states, that we label low- and high-adoption steady states. The comparative

static with respect to parameters differ across the interior steady states, with the low adoption

one having unintuitive signs (for instance a higher fixed cost increases adoption).

Fourth, we conduct a perturbation analysis with respect to the initial condition to study

the stability of the interior steady states. This is a non trivial problem that involves the

linearization of an infinite dimensional system: we handle it using techniques from the Mean

Field Game literature developed in Alvarez, Lippi and Souganidis (2022). We find that the

low-adoption steady state is locally unstable, while the high-adoption equilibrium is locally

3We also analyze a model where x is heterogeneous across agents but fixed through time, mostly to
compare with the existing literature. A key takeaway from this model is that, starting from a no adoption
initial distribution, it features no dynamics; it is not a model of slow diffusion, but one of “jumps.” Instead, the
stochastic model features slow adoption given the option value of waiting for a high draw of the idiosyncratic
benefit.

4See Reinganum (1981) for an early analysis of a dynamic equilibrium with externalities in a symmetric
two-agent setting.
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stable.5 Because of these results we focus on equilibria with either no activity or high activity

in the steady state.

Fifth, since all equilibria are socially inefficient, we solve the planner’s problem. This

is a non-trivial problem that involves controlling the entire distribution of agents across

time. The planner’s problem yields a system of PDEs that is almost identical to those

of the equilibrium. We leverage this similarity to decentralize the planner’s solution using

a time-varying subsidy (paid each period to those that use the technology). The optimal

time-varying subsidy corrects the network externality, and it is equal to the benefits of the

inframarginal adopters. If the initial condition has lower adoption than the steady steady of

the planner problem, the subsidy is increasing through time.

We then use data on the diffusion of electronic payment methods and user networks

to quantify these strategic complementarities. In particular, we leverage detailed data on

SINPE, which connects users in Costa Rica and allows them to mobilize funds between their

bank accounts. Information on all SINPE transactions has been collected since its inception

in May 2015, which allows us to analyze the dynamics of adoption of this system of national

payments in great detail. In turn, data on users—both receivers and senders—can be linked

to several relevant networks, including the employer-employee network, family networks, and

spatial networks to explore the role of neighbors.

The platform data allow us to test several model predictions. In particular, we document

five new empirical facts that align with our model. First, we find that the technology dif-

fused slowly; while by 2021 over 60% of the adult population had adopted SINPE. Second,

most transactions are peer-to-peer; while firms can potentially use SINPE, over 90% of the

transactions are between individuals, which aligns with a model like ours, where small agents

trade with each other, rather than one with a few non-atomistic players (large firms). Third,

individuals “belong” to networks; 75% of all transactions occur between coworkers, neigh-

bors, or relatives. Fourth, there is evidence of selection at entry; in line with how individuals

with a high idiosyncratic benefit adopt the technology first, we find that users who adopted

when the network was small use the app more intensively, and that users who adopted early

have, on average, higher wages and higher skill than those who adopted later. Fifth, there is

evidence of strategic complementarities; changes in the share of people within a network who

adopt SINPE are associated with changes in the intensity with which users in that network

use the app. We see these facts as consistent with the key assumptions of our model where

network effects are important and agents are heterogenous.

Since a key fact is the slow and gradual adoption of SINPE, we also explore an alternative

5Incidentally, we find that the linear approximation is accurate and very close to the paths produced by
the solution of the discretized model.
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model where the gradual diffusion arises because of an information friction. This model

generates slow learning and a gradual technology adoption. The pure learning model differs

from the model with strategic complementarity in that: (i) it has a unique equilibrium, and

a unique stable steady state, (ii) the use of the technology for those that adopt does not

depend on the size of the network, (iii) the equilibrium is constrained efficient: the optimal

subsidy to use the technology is zero. There are several useful insights in this model, such

as the S-shaped profile of adoptions. But the model does not feature the newtwork effects

observed for SINPE, a fact that makes it less interesting for discussing the optimal public

regulation/intervention upon the introduction of a CBDC.

We then proceed with a strategy to calibrate this model. Our quantitative analysis

combines a model of strategic complementarities with a random diffusion of information.

The calibration requires us to estimate the value of the parameter that governs the strength

of the strategic complementarities. We do so by exploiting exogenous changes in the network

of coworkers after a mass layoff. In particular, we examine how the share of coworkers

who has adopted changes as someone moves from one firm to another one for plausibly

exogenous reasons. This strategy allows us to leverage our rich data to overcome the fact that

people select into their networks and the reflection problem that arises when common shocks

affect those in the network. We examine both how the extensive and the intensive margin

of adoption respond. The intensive margin, in particular, allows us to identify strategic

complementarities. We calibrate other parameters in the model using key moments from the

data, including the half-life of the share of adopters. The calibrated model shows that the

optimal subsidy moves the economy to 100% adoption.

Contribution to the literature. In contrast to the previous literature, which has stud-

ied deterministic problems (e.g. Stokey 2020), our model allows for both stochastic network

connections and an initial arbitrary paths of the distribution of adopters. Our theoretical

approach has three advantages relative to the previous literature studying adoption dynam-

ically. First, it allows for dynamics in technology adoption as observed in the data. In the

stochastic version of the model, our model has dynamics even without the inclusion of fric-

tions to delay the transition to steady state. Second, our model allows for multiple equilibria

(e.g. Cabral 1990). As a result, we can consider equilibria with low adoption rates due to

coordination failures, a feature that is very relevant in low income countries. Lastly, and

more importantly, casting the problem as a Mean Field Game allows us to solve the planning

problem. This is relevant for policy since the presence of network externalities implies that

the solution of the decentralized problem is not efficient. The solution of this problem is

non-trivial since the planner needs to account for the law of motion of the density of non-
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adopters at each point of the state space and each time period. Our framework allows us to

compute the optimal subsidy, which equates the solution of the decentralized problem with

that of the planner and depends positively on the importance of strategic complementarities,

which can be estimated directly in the data. Relevant studies include Benhabib et al. (2021),

who model firms that can endogenously innovate and adopt at technology and the effect of

these choices on productivity and balanced growth, but without conducting an analysis of the

transitions between steady states; Crouzet et al. (2020), who develop a model with a unique

equilibrium where the rate of adoption increases given a shock due to complementarities and

where dynamics come from a sluggish adjustment a la Calvo (1983); and Buera et al. (2021),

who study policies that can coordinate technology adoption across firms.

On the empirical front, SINPE data spans from 2015 to 2021. During this time, it went

from zero adoption to over 75% of national adoption. These features allow us to study the

general equilibrium effects of adoption across a long time period and complements previous

studies, summarized by Suri (2017), that have relied on RCTs or shorter periods of time

to analyze the patters of adoption of electronic methods of payment. In contrast to other

large-scale studies, of which the closest one to our work is Crouzet et al. (2020), who rely on

variation in the intensity with which Indian districts were exposed to the cash contraction

induced by the 2016 Indian Demonetization, we are able to use individual-level data on

adoption and SINPE usage, and on each person’s (and firm’s) network of SINPE users,

relatives, neighbors, and coworkers. This provides an opportunity to understand the relevant

networks for each user, identify the strength of complementarities and how they vary across

networks and time, and the dynamics of adoption over a long time period.

2 Model setup

We setup a model to study the adoption of a new technology. The economy is populated

by a continuum of agents that differ in the potential benefits from adopting the technology.

Let N(t) denote the number of agents that have adopted the technology at time t. Let

x ∈ [0, U ] be the idiosyncratic potential benefit of adopting, due to e.g., the agent’s strength

of connections. We assume that the flow benefit of the technology for an agent who adopts

are given by

x(θ0 + θnN(t)) (1)

at time t, where θ0, θn > 0 are parameters. The idiosyncratic potential x follows a Brownian

motion, independent across agents, with variance per unit of time σ, no drift, and reflecting

barriers at x = 0 and x = U , so that dx = σdW where W is a standardized Brownian

motion. We let c > 0 be the fixed cost of adopting the technology. The time discount rate is
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r > 0, and we assume that with probability ν per unit of time agents die, so that the agents

discount at rate ρ ≡ r+ν. Agents that die are replaced by newborns without the technology

and are given a random draw x from the invariant density f on [0, U ] which is uniformly

distributed due to our reflecting barriers assumption, i.e. f(x) = 1/U .

2.1 Optimal adoption decisions

In this section we describe the optimal adoption decision as a function of the whole path of

N , the fraction of agents that adopt the technology. Let a(x, t) be the value function of an

agent who uses the technology and has state x at time t:

a(x, t) = E
[ ∫ ∞

t

e−ρ(s−t) (θ0 + θnN(s))x(s)ds
∣∣∣ x(t) = x

]
(2)

for all t ≥ 0 and x ∈ [0, U ]. Note that the agent takes the path N(s) as given.

For technical motives we assume that the path of N(s) is constant at some given value N̄

for s > T where T is given. All our results hold for finite but arbitrarily large T , and some

of the results hold for T →∞. Later on we will focus on the case when N̄ is a steady state

value for the model with T =∞.

An agent with state x that at time t has not yet adopted has a value function v(x, t) that

solves the following stopping-time problem

v(x, t) = max
t≤τ

E
[
e−ρ(τ−t) (a (x (τ) , τ)− c)

∣∣∣x(t) = x
]

(3)

where τ denotes the time of the adoption and depends only on the information generated by

the process for x’s and on calendar time.

Discretized model. For future use we introduce a discretized version of the model. It is

defined by positive integers I, J which determine step sizes for t given by ∆t = T
J−1

and for x

given by ∆x = U
I−1

. Thus t ∈ {∆t(j− 1) : j = 1, . . . , J} and x(t) ∈ {∆x(i− 1) : i = 1, . . . , I}.
The reflecting Brownian Motion, Poisson processes, and discounting are changed accordingly,

following the scheme used in finite difference approximations. See Definition 2 in Appendix A

for a detailed definition.

As a preliminary result, we show that the optimal adoption policy is a threshold rule:

Proposition 1. Fix a path N and a time t ∈ [0, T ]. If it is optimal to adopt at (x1, t),

then it is also optimal to adopt at (x2, t) where x2 > x1. This holds for the continuous time

as well as for the discretized version.

6



This proposition means that we can represent the optimal adoption rule at time t as a

threshold rule, x̄(t). The result is intuitive but non-trivial since the process for x is persistent.

We denote aT (x) = a(x, T ) and vT (x) = v(x, T ), that depend only on the constant N̄ .

We can now concentrate on the time interval [0, T ]. In this interval we write the optimal

decision rule as a function of the path N : [0, T ] → [0, 1], and of the functions aT and vT .

Indeed, the optimal decision depends on the difference between aT and vT which we denote

by DT ≡ aT − vT , further discussed in Section 2.4. We denote the optimal threshold as

x̄ = X (N ;DT ), so that x̄ : [0, T ]→ [0, U ].

2.2 Aggregation

In this section we aggregate the individual adoption decisions and compute the implied path

for the fraction of adopters, N . We start by defining the probability that an agent alive at s

with state x(s) = x survives until time t, while the value of her state remains below x̄ during

this period, i.e:

P (x, s, t; x̄) = Pr
[
x(ι) ≤ x̄(ι), for all ι ∈ [s, t]

∣∣∣ x(s) = x
]
e−ν(t−s) (4)

For an agent that at time s has x ≤ x̄(s), the value of P (x, s, t; x̄) gives the probability that

this agent will survive up to t without adopting.

We let m0(x) be the density of the agents at time t = 0 without the technology. Given

our assumption about x, we require 0 ≤ m(x) ≤ 1/U for all x ∈ [0, U ]. The fraction of agents

that have adopted the technology at time t is thus given by

N(t) = 1−
∫ U

0

P (x, 0, t; x̄)m0(x)dx−
∫ t

0

ν

[∫ U

0

P (x, s, t; x̄)
1

U
dx

]
ds (5)

The second term on the right hand side is the fraction of agents who did not have the

technology at time 0 and survived until time t without adopting. The third term considers

the cohorts of agents that are born between 0 and t, and for each of these cohorts computes

the fraction that survived without adopting up to t. We note that an equivalent version of

equation (5) holds in a discretized version of the model.

We denote the resulting path of N as a function of x̄ (the path of the adoption threshold)

and of the initial condition m0, namely N = N (x̄;m0).

7



2.3 Equilibrium

The equilibrium is given by the fixed point between the forward looking optimal adoption

decision, encoded in X , and the backward looking aggregation, encoded in N . To emphasize

the forward looking nature of X , note that it depends on the terminal value function DT =

aT − vT . To emphasize the backward looking nature of N , note that it propagates the initial

condition m0. We then have

Definition 1. Fix an initial conditionm0, and a terminal value functionDT . An equilibrium

{N∗, x̄∗} solves the fixed point :

N∗ = F (N∗;m0, DT ) where F (N ;m0, DT ) ≡ N (X (N ;DT ) ;m0) (6)

and the corresponding x̄∗ = X (N∗;DT ).

Note that this is a canonical definition of equilibrium, where the operator F combines the

two operators N and X defined before. This definition holds for both the continuous time

and the discretized version of the model.

2.4 A recursive formulation of the equilibrium

The functions a(x, t) and v(x, t), and the optimal policy x̄(t), have a recursive representation

in terms of Hamilton-Jacobi-Bellman (HJB) partial differential equations. We derive these

equations and their boundaries in Appendix G. The information encoded in the equations

can be summarized by the value function D(x, t) ≡ a(x, t)− v(x, t), which satisfies:

ρD(x, t) = min
{
ρc , x(θ0 + θnN(t)) +

σ2

2
Dxx(x, t) +Dt(x, t)

}
(7)

for all x ∈ [0, U ], t ∈ [0, T ] and terminal condition D(x, T ) ≡ DT (x) = aT (x)− vT (x).

We interpret the value function D(x, t) as the opportunity cost of waiting to adopt. To

see why, note that a(x, t) − c is the net value of adopting immediately while v(x, t) is the

net optimal value, that may entail adopting in the future, see equation (2) and equation (3).

From here it follows that

D(x, t) = E
[ ∫ τ

t

e−ρ(s−t) (θ0 + θnN(s))x(s)ds+ e−ρ(τ−t)c
∣∣∣ x(t) = x

]
(8)

Optimality requires that D(x, t) ≤ c, which implies the value matching condition at the

8



barrier. We are looking for a classical solution that satisfies:

ρD(x, t) = x(θ0 + θnN(t)) +
σ2

2
Dxx(x, t) +Dt(x, t) (9)

for all x ∈ [0, x̄(t)] and t ∈ [0, T ] with boundary conditions:

D(x̄(t), t) = c Value Matching

Dx(x̄(t), t) = 0 Smooth Pasting (10)

Dx(0, t) = 0 Reflecting

If the solution is regular, it also features smooth pasting. Finally, since x = 0 is a reflecting

barrier, the value function has a zero derivative at that point.

Let m(x, t) denote the density of the agents with x that have not adopted at t. The law

of motion of m for all t ≥ 0 is:

mt(x, t) = ν

(
1

U
−m(x, t)

)
+
σ2

2
mxx(x, t) if 0 ≤ x ≤ x̄(t)

m(x, t) = 0 for x ∈ [x̄(t), U ] (11)

mx(0, t) = 0

and initial condition m0(x) = m(x, 0) for all x ∈ (0, U). The p.d.e. is the standard Kol-

mogorov forward equation (KFE). The density of non-adopters is zero to the right of x̄(t),

since this is an exit point. The last boundary condition is obtained from our assumption that

x reflects at x = 0.

The fraction of agents that have adopted the technology is thus given by

N(t) = 1−
∫ x̄(t)

0

m(x, t)dx (12)

A definition of equilibrium equivalent to Definition 1 can be obtained as the four functions

{D,m, x̄, N} satisfying the coupled of p.d.e.’s for D and m, and the respective boundary

conditions, given by equation (9), equation (10), equation (11) and equation (12). This is

the typical definition used in the Mean Field Game literature. We note that this system of

p.d.e.’s is involved for two reasons. First the equations are coupled through x̄ and N . Second,

the equations feature a free boundary (for every period), akin to the Stefan problem which

is known to be non trivial.
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3 Equilibrium of the Stochastic Baseline Model

In this section we establish equilibrium existence. We first give a normalization of the primal

problem that is useful for empirical applications.

Lemma 1. The problem with parameters {c, ρ, ν, σ, θ0, θn, U}, initial condition m0,

f(x) = 1/U and equilibrium objects {x̄(t), N(t), a(x, t), v(x, t)} for x ∈ [0, U ] and t ∈ (0, T )

is equivalent to the following normalized problem
{

c
Uθ0

, ρ, ν, σ
U
, 1, θn

θ0
, 1
}

for a normalized

variable z ≡ x
U
∈ (0, 1) and t ∈ (0, T ) with initial condition m0(z) = U m0(x), f(z) = 1 and

equilibrium objects
{
x̄(t)
U
, N(t), â (z, t) , v̂ (z, t)

}
where â (z, t) ≡ θ0a (zU, t) and v̂ (z, t) ≡

θ0v (zU, t).

The lemma shows that the problem features 5 independent parameters as U and θ0 can

be normalized without affecting the nature of the solution as the dynamics of the technology

diffusion are unchanged.

3.1 Monotonicity and Existence of Equilibrium

The next proposition shows that the function X , giving the path of the optimal threshold x̄

as a function of the path N , is monotone decreasing. Thus an agent facing a higher path of

adoption will choose to adopt earlier. Moreover, the proposition shows that an agent facing

larger values of θ0 and/or θn, will also adopt earlier.

Proposition 2. Fix the terminal value function DT = aT − vT and θn ≥ 0. Let x̄ be the

threshold path implied by N(t). Consider two paths such that N ′(t) ≥ N(t) for all t ∈ [0, T ],

then x̄′(t) ≤ x̄(t). Moreover, let θ = (θ0, θn) with the corresponding optimal threshold path

x̄. If θ′ ≥ θ then x̄′(t) ≤ x̄(t).

Proposition 2 also holds if we replace the continuous time model by a discrete-time,

discrete-state, approximation to it. For instance, it holds for a finite difference approximation,

which we use for some computations, and which converges to the continuous-time version.

The reason the proof holds is that we verify the conditions to use Topkis (1978). Thus,

once we reformulate the problem in terms of stopping times, we can apply the monotone

comparative statics logic developed by Milgrom and Shannon (1994) to characterize the

policy function.

Next we show that for the same initial condition m0(x), if the path x̄(t) ≤ x̄′(t) then

N ′(t) ≤ N(t) for all t. We need to show that the fraction of non-adopters is decreasing in

x̄(t). This implies that N is monotone decreasing.
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Proposition 3. Fix m0 and consider two path of thresholds x̄, x̄′ satisfying x̄′(t) ≥ x̄(t) for

all t ∈ [0, T ]. Let N ′ = N (x̄′;m0) and N = N (x̄;m0). Then N ′(t) ≤ N(t) for all t ∈ [0, T ].

Moreover, fix a threshold x̄, and consider two initial measures with m′0(x) ≥ m0(x) for all

x ∈ [0, U ], then N ′ = N (x̄;m′0) and N = N (x̄;m0). Then N ′(t) ≤ N(t) for all t ∈ [0, T ].

The next theorem uses the monotonicity of X and N , established in Proposition 2 and

Proposition 3, which by the definition in equation (6) implies that F is monotone. This

allows us to use Tarski’s theorem. For technical reasons the theorem applies to a finite

horizon, discretized version of the model introduced in Section 2.1 where the time domain

[0, T ] is divided into J segments and the state [0, U ] is divided into I segments (see Definition 2

in Appendix A).6 We have:

Theorem 1. Consider a finite horizon, discrete time - discrete state version of the model

and θn ≥ 0. Fix an initial condition m0 ∈ RI
+ and a terminal value function DT ∈ RI

+.

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest

equilibrium, {x̄L, NL}, and a largest one, {x̄H , NH}, and any equilibrium path {x̄, N} satis-

fies NL ≤ N ≤ NH and x̄L ≥ x̄ ≥ x̄H .

(ii) Let θ′ ≥ θ and m′0 ≤ m0. Consider the equilibrium {x̄′, N ′} with the largest N ′ corre-

sponding to {θ′,m′0} and the equilibrium {x̄, N} with largest N corresponding to {θ,m0}.
Then x̄′ ≤ x̄ and N ′ ≥ N .

The first statement of the theorem establishes existence of the equilibrium for the finite

horizon - discrete time version of the model. The result holds for an arbitrary small length

of the time period, and for an arbitrary large horizon T . An important consequence of

the theorem is that the equilibrium set, for a given initial distribution of non-adopters m0

and terminal valuation DT = aT − vT , is a lattice. Moreover, we can compute the value

of the extreme equilibria by iterating on Nk+1 = F(Nk;DT ,m0) for k = 0, 1, . . . , starting

from N0(t) = 1 or from N0(t) = 0, for all t. The theorem ensures that the limit converges

to a fixed point. If the two sequences converge to the same limit, then the equilibrium is

unique. The second statement of the theorem establishes a useful comparative statics result:

considering a model with a larger θ or with a smaller m0 implies that the high-adoption

equilibrium is larger (more agents adopt).

4 No adoption Equilibrium

In this section we analyze the equilibrium in which there is no adoption i.e. x̄(t) = U for all

t. To simplify we focus on the case where T = ∞. This case is particularly easy because

6The reason is the completeness of the lattice in which F is defined.
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agents decision are in a corner. We find the basin of attraction for such equilibrium, i.e. we

find a threshold for the number of adopters N , so that a no adoption equilibrium exists if

and only if at t = 0 there are fewer agents with the technology than N .

Proposition 4. A no-adoption equilibrium with x̄(t) = U and N(t) = N(0)e−νt for all

t ≥ 0 exists if and only if 1−
∫ U

0
m0(x)dx ≤ N , where

ρc

U
= θ0 [1 + g(ηU)] +N

ρθn
ρ+ ν

[1 + g(η′U)] (13)

η =

√
2ρ

σ2
, η′ =

√
2(ρ+ ν)

σ2
and g(y) ≡ csch(y)− coth(y)

y
∈ (−1

2
, 0) . (14)

Note that N > 0 if and only if ρc
U
> θ0 [1 + g(ηU)]. Moreover, if N > 0 we have:

(i) N is an increasing function of σ, satisfying

ρ+ ν

ρθn

(ρc
U
− θ0

)
≤ N ≤ ρ+ ν

ρθn

(
2
ρc

U
− θ0

)
(15)

where the two limits are reached as σ → 0 and as σ →∞, respectively.

(ii) N is a decreasing function of θn.

An immediate corollary of this proposition is that m0(x) = 1/U is a steady state provided

that N ≥ 0, i.e. under this condition if we start with no adoption, then one stays with no

adoption. The fact that N > 0 requires θ0 to be small is intuitive: when this condition is

violated then agents with a large x will find it profitable to adopt regardless. Likewise, the

effect of σ is intuitive since, for a given U , a large σ makes the process to revert to the mean

faster. Finally, if θn is large then it is more profitable to coordinate on high N and then the

basin of attraction is smaller.

5 Steady states

In this section we let T = ∞ and analyze the steady state version of the model. We look

for an initial condition m0 such that the distribution is invariant, so that x̄(t) = x̄ss and

N(t) = Nss, both constant through time.

5.1 Steady states in the deterministic model (σ = 0)

We begin by studying the deterministic case where σ = 0, so that the agent’s valuation x

does not change. This case is useful to relate to the existing literature studying technology
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diffusion (e.g. Stokey (2020); Buera et al. (2021); Crouzet et al. (2020)), and it unveils the

basic forces at work in the adoption problem.

We specialize equation (7) to the steady state of the deterministic model. Since σ2 = 0

then Dxxσ
2 = 0 and since we focus on a steady state Dt = 0. The equation then becomes

ρD̃(x) = min
{
ρc , x(θ0 + θnNss)

}
(16)

for all x ∈ [0, U ]. The steady state threshold x̄ss is the value of x solving

ρc = x̄ss(θ0 + θnNss) (17)

Using equation (11) and imposing the σ2 = 0 and the steady state mt = 0 condition gives

one equation for the invariant distribution of agents without the technology which is given

by m̃(x) = 1
U

for x ∈ [0, x̄ss] and m̃(x) = 0 for x ∈ [x̄ss, U ] so that we have

Nss = 1− x̄ss
U

(18)

Figure 1 plots the non-linear equation (17) and the linear equation equation (18). Solving

this simple system for x̄ss gives a quadratic equation that can have zero, one or two interior

steady states. We have the following:

Proposition 5. There are two cases. Case (i): If ρc < θ0U , then there is a unique steady

state, x̄ss, and it is interior i.e. 0 < x̄ss < U . Case (ii): If θ0U < ρc, then there is always

a no activity state state, x̄ss = U . In this case, there is threshold value for θ∗n such that if

θn < θ∗n there is no other steady state, whereas if θn > θ∗n there are two additional interior

steady states.

In words, multiple interior steady states occur when the complementarities are large

relative to the intrinsic value of the technology, i.e. when θ0 is small and θn is large.

13



Figure 1: Deterministic steady state solution

(i) ρc < θ0U (ii) θ0U < ρc and θn large

We concentrate on the steady state of the deterministic model for two reasons. First,

for small σ they provide a good benchmark for the steady state of the stochastic model

analyzed next. Second, we omit the treatment of the dynamics of this model because for

a non-pathological set of initial conditions the model converges immediately to the steady

state. Indeed, in Appendix H we show that if the initial condition is such that at time zero

no agent with low valuation has adopted the technology (while some high valuation agents

may have done so), the equilibrium of the deterministic problem has no dynamics. This

implies that adoption occurs instantaneously and that the fraction of adopters is a constant

N(t) = Nss. Interestingly, the stochastic version of the model will instead feature dynamics,

namely a gradual adoption of the technology so that N(t) is increasing through time.

5.2 Steady states in the stochastic model (σ > 0)

A steady state is given by two constant values of Nss and x̄ss that solve the time invariant

version of the partial differential equations presented in Section 2.4. Given Nss we obtain

D(x, t) = D̃(x) and x̄(t) = x̄ss. Given x̄ss we obtain and m(x, t) = m̃(x), from which we

derive Nss. Given Nss, we find D̃ and x̄ss that solve:

ρD̃(x) = x(θ0 + θnNss) +
σ2

2
D̃xx(x) if x ∈ [0, x̄ss] Value of Adoption

D̃x(0) = 0 Reflecting

D̃(x̄ss) = c Value Matching

D̃x(x̄ss) = 0 Smooth Pasting
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Given x̄ss solve for m̃

0 = −νm̃(x) + ν
1

U
+
σ2

2
m̃xx(x) KFE if x ≤ x̄ss

m̃(x̄ss) = 0 and m̃x(0) = 0 Exit and Reflecting

and given m̃(x) and x̄ss, we define the fixed point

Nss = 1−
∫ x̄ss

0

m̃(s)dx .

We begin by solving D̃(x), and x̄ss given a value for Nss. The details of the solution

can be found in Appendix C.1. Using the solutions for D̃ we can solve for Xss : [0, 1] →
[0, U ], a function that gives the optimal steady state threshold as a function of a given Nss.

The monotonicity properties of the function D̃ on the parameters Nss, θn, c and θ0 give the

following characterization of the threshold Xss.

Lemma 2. The function Xss is decreasing in Nss, strictly so at the points where 0 < x̄ss < U .

Fixing a value of Nss, the function Xss is strictly increasing in c, strictly so at the points

where 0 < x̄ss < U . Fixing a value of Nss, the function Xss is strictly decreasing in θ0

and θn at the points where 0 < x̄ss < U . Moreover we have the following expansion:

Xss(Nss) = ρc
θ0+θnNss

+ σ√
2ρ

+ o(σ).

Since the function Xss(Nss) is decreasing in Nss, it has an inverse, which we denote by

X−1
ss , and it is given by:

X−1
ss (x̄ss) =

1

θn

 ρc(
x̄ss + Ā1eηx̄ss + Ā2e−ηx̄ss

)
− (1+η(Ā1eηx̄ss−Ā2e−ηx̄ss))(eηx̄ss+e−ηx̄ss )

η(eηx̄−e−ηx̄ss )

− θ0

 where

Ā1 ≡
1

η

(
1− e−ηU

)
(e−ηU − eηU)

, Ā2 ≡
1

η

(
1− eηU

)
(e−ηU − eηU)

and η ≡
√

2ρ/σ2 (19)

Note that, from the expansion given in Lemma 2, fixing x̄ss, then X−1
ss (x̄ss) is increasing in

σ in a neighborhood of σ = 0, provided that θn > 0, we have

X−1
ss (x̄ss) ≈

1

θn

(
cρ

x̄ss − σ/
√

2ρ
− θ0

)
Next we can solve the Kolmogorov forward equations for m̃(x), given a barrier x̄ss subject

to an exit point and to the conditions coming from the reflecting barriers. We denote the

corresponding value of the fraction that have adopted asNss(x̄ss). The details of the solutions

15



can be found in Appendix C.2. Solving this equation we obtain

Nss(x̄ss) = 1− x̄ss
U

+
tanh (γx̄ss)

Uγ
where γ ≡

√
2ν/σ2 (20)

As it is intuitive, the value of Nss(x̄ss) is decreasing in the level of the barrier x̄. The next

lemma, obtained by analyzing equation (20) gives a characterization of Nss.

Lemma 3. Fix γ > 0, then Nss(x̄) is strictly decreasing in x̄ss. Fixing x̄ > 0, then Nss is

strictly increasing in γ, and hence strictly decreasing in σ. Moreover, we have the expansion:

Nss(x̄) = 1− x̄ss
U

+ σ
U
√

2ν
+ o(σ).

Thus, together equation (19) and equation (20) determine x̄ss and Nss. In particular, a

steady state, described by the pair x̄ss, Nss, which solve

Nss ≡ Nss(x̄ss) = X−1
ss (x̄ss)

Next we summarize the behaviour of the steady states for small values of σ. We label

the steady states with superscripts {H,L} to hint at the associated High or Low level of

adoption, so that x̄H < x̄L.

Proposition 6. Assume that ν > 0 and that the parameters θ0, θn, c and ρ are such

that there are two interior steady states in the deterministic case of σ = 0, and label them

as x̄Hss < x̄Lss. Then, (i) there exists a σ̄ > 0 such that for all σ ∈ (0, σ̄) there are two interior

steady states x̄Hss < x̄Lss. (ii) Each steady state is continuous with respect to σ at σ = 0. (iii)

The sign of the comparative static differs across steady states, with

∂x̄Hss
∂c

> 0 >
∂x̄Lss
∂c

and
∂x̄Lss
∂θ0

> 0 >
∂x̄Hss
∂θ0

The proposition shows that the high adoption steady state behaves in an intuitive way,

with more adoption (a lower x̄Hss) associated to a smaller adoption cost (c), or to a larger

intrinsic value of the technology (θ0). The comparative statics for the low adoption steady

states are just the opposite.

Importantly, the last term of equation (20) shows that there is a smaller density of non-

adopters for x ∈ [0, x̄ss] in the stochastic case relative to the deterministic case. This obser-

vations is key to understand why the stochastic case has dynamics. Panel (a) of Figure 2

shows the density of non-adopters around x̄ for σ ≈ 0. In this case, the density of adopters is

very close to zero so that the distribution looks almost uniform, as in the deterministic case.
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Panel (b) shows the same figure for σ > 0. First, x̄ss is larger due to the option value that is

present in the stochastic model. More importantly, for σ > 0, the density of adopters below

x̄ss is non-zero, as a result the density of non-adopters is not uniform. The key novelty of the

stochastic model is that there are agents with x(t) < x̄(t) who have the technology. These

are agents who adopted the technology in the past (for some t′ < t when x(t′) > x̄(t′), and

whose x moved down in time. As a result, m(x) < 1/U when σ > 0. Given that the density

takes time to adjust, the stochastic model features the presence of dynamics in the adoption

of new technology as the optimal value of x̄ is not independent of time.

Figure 2: Stochastic Steady State: Density of non-adopters: m(x)

(a) σ ≈ 0 (b) σ > 0

Note: The figure plots the distribution of non-adopters in the stochastic steady state. Panel (a) shows an example with σ close

to zero (i.e. σ = 0.00003) , as in the deterministic case. Panel (b) shows an example where σ is larger than zero (i.e .σ = 0.002).

The parameters used in the example are r = 0.03, ν = 0.05, U = 0.05, c = 0.1, θ0 = 0.01, and θn = 1.2.

6 Perturbation and stability of equilibrium steady states

In this section we analyze the stability of the steady states. We explore the question using

a perturbation of the distribution of adopters in each of the two interior steady states. The

analysis uses techniques from the Mean Field Game literature developed in Alvarez, Lippi

and Souganidis (2022). The analysis allows us to approximate X and N around the steady

state and to inspect the local stability of the equilibrium.

We begin with the approximation of x̄(t) = X (N)(t). We take the directional derivative

(Gateaux) with respect to an arbitrary perturbation n of a constant path N . In particular,

we consider paths defined by N(t) = Nss+ε n(t) around the steady state Nss. We will denote

this Gateaux derivative by ȳ.

Proposition 7. Fix an interior steady state x̄ss, with its corresponding Nss. Let DT
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be equal to the steady state value function D̃ corresponding to that steady state. Let n :

[0, T ]→ R be an arbitrary perturbation. Then

ȳ(t) ≡ lim
ε↓0

X (Nss + εn; D̃)(t)−X (Nss; D̃)(t)

ε

=
θn

D̃xx(x̄ss)

∫ T

t

G(τ − t)n(τ)dτ (21)

where

G(s) ≡
∞∑
j=0

cje
−ψjs ≥ 0 , ψj ≡ ρ+

σ2

2

(
π(1

2
+ j)

x̄ss

)2

and cj ≡ 2

(
1− cos(πj)

π(j + 1
2
)

)
,

where D̃xx(x̄ss) < 0 is the second derivative of the steady state value function:

D̃xx(x̄ss) =
ρc− x̄ss [θ0 + θnNss]

σ2/2
, Nss = 1− x̄ss

U
+

tanh (γx̄ss)

γU
and γ =

√
2ν

σ2

Thus we can write x̄(t) = x̄ss + εȳ(t) + o(ε). Note that G is positive and Dxx is negative,

so the effect of the future path on the current value is negative, which is consistent with the

property that X is decreasing. Also note that it is proportional to θn, so if θn = 0, then the

threshold will be constant. Thus, the approximation of x̄(t) depends on the perturbation

of the path of N from t to T , given by n(s) for s = [t, T ]. The proof of the proposition

is obtained by jointly differentiating with respect to ε the system defined by D and x̄ in

equation (9) and equation (10). This produces a new p.d.e., and boundary conditions. The

expression for ȳ is obtained once we solve this new p.d.e., see the proof in Appendix D.1.

Now we turn to the perturbation for the fraction of the adopters as a function of the

thresholds and of a perturbation of the initial condition. We approximate N(t) = N (x̄,m0)(t)

by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation y

of a constant path x̄ and a perturbation ω on the steady state m̃. In particular, we consider

paths defined by x̄(t) = x̄ss + ε ȳ(t) around the steady state xss, and m0(x) = m̃(x) + εω(x).

We will denote this Gateaux derivative by n.

Proposition 8. Fix an interior steady state x̄ss, with its corresponding Nss, and let m̃

be the corresponding steady state distribution of non-adopters. Let ω : [0, x̄ss] → R be an

arbitrary perturbation to the distribution, and let ȳ : [0, T ]→ R be an arbitrary perturbation
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of the threshold. Then

n(t) ≡ lim
ε↓0

N (x̄ss + εy; m̃+ εw)(t)−N (x̄ss; m̃)(t)

ε

= n0(ω)(t) +
m̃x(x̄ss)σ

2

x̄ss

∫ t

0

J(t− τ)ȳ(τ)dτ (22)

where

J(s) =
∞∑
j=0

e−µjs with µj = ν +
1

2
σ2

(
π(1

2
+ j)

x̄ss

)2

(23)

n0(ω)(t) ≡ −
∞∑
j=0

x̄ss
π(1

2
+ j)

〈ϕj, ω〉
〈ϕj, ϕj〉

e−µjt, (24)

ϕj(x) ≡ sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss] (25)

〈ϕj, ω〉
〈ϕj, ϕj〉

=
2

x̄ss

∫ x̄ss

0

ϕj(x)ω(x)dx and m̃x(x̄ss) = − γ
U

tanh(γx̄ss)

Thus we can write N(t) = Nss + εn(t) + o(ε). This formula has the effect of two pertur-

bations. One is the perturbation on the initial condition m0 given by ω, whose effect is in

the term n0(ω)(t). Alternatively, n0(ω)(t) is the effect at time t on the path N(t) of a per-

turbation of the initial condition keeping the threshold rule x̄ fixed. The function n0(ω) can

be further reinterpreted by considering the limit case of perturbation ω given by (the limit)

of distribution concentrated at x = x̂ ≤ x̄ss, i.e. a Dirac’s delta function as ω(x) = δx̂(x). In

this case

n0(δx̂)(t) = −
∞∑
j=0

2
sin
((

1
2

+ j
)
π
(

1− x̂
x̄ss

))
(1

2
+ j)π

e−µjt

The second term in equation (22) contains the effect of the perturbation y on the path

of the threshold, x̄(s). Alternatively, this term gives the effect at time t on the path N(t)

of a perturbation of the threshold rule x̄ keeping the initial condition fixed. Note also that,

consistent with our general result for N , the effect of the thresholds is negative, because

J > 0 and m̃x(x̄ss) < 0.

For future reference it is useful to understand the behaviour of n0(t) as function of time.

In particular, the rate at which the perturbation ω to the initial distribution converges back to

the steady state, while keeping x̄(t) = x̄ss. This rate is given by the value of µ0 = ν+ σ2

8

(
π
x̄ss

)2
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which is the dominant eigenvalue, which correspond to a half-life h given by:

h =
log(2)

ν + σ2

8

(
π
x̄ss

)2 (26)

The strategy of the proof is similar to the one outlined for the previous proposition and

is given in Appendix D.2.

The next step is to use the last two propositions to derive one equation for the linearized

equilibrium as a function of the perturbed initial distribution m0(x) = m̃(x) + εω(x). We

combine equation (72) and equation (22) to arrive to a single linear equation that n(t) must

solve as a function of ω.

Theorem 2. Fix an interior steady state x̄ss, with its corresponding Nss, and let m̃ be

the corresponding steady state distribution of non-adopters. Let m0(x) = m̃(x) + εω(x).

Let DT be equal to the value function D̃ corresponding to that steady state. The linearized

equilibrium must solve

n(t) = n0(ω)(t) + Θ(x̄ss)

∫ T

0

K(t, s)n(s)ds (27)

where n0(ω)(t) is given in Proposition 8 and Θ(x̄ss) ≡ m̃x(x̄ss)σ2θn
x̄ssD̃xx(x̄ss)

> 0. The kernel K is given

by

K(t, s) =
∞∑
i=0

∞∑
j=0

cje
−µit−ψjs

[
e(µi+ψj) min{t,s} − 1

µi + ψj

]
> 0 (28)

Moreover, LipK ≡ supt
∫
|K(t, s)|ds ≤

(
x̄2
ss

σ2

)2

. Furthermore, if Θ(x̄ss) LipK < 1 there exists

a unique bounded solution to equation (27) which is the limit of

n(t) =
[
I + ΘK + Θ2K2 + . . .

]
n0(ω) where K(g)(t) ≡

∫ T

0

K(t, s)g(s)ds

and where Kj+1(g)(t) ≡
∫ T

0
K(t, s)Kj(g)(s) ds for any bounded g : [0, T ]→ R.

This theorem gives a linear system of equations that the perturbation of the equilibrium

around a steady state must satisfy, as well as a partial characterisation of its solution. The

proof can be found in Appendix D.3.
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7 The planning problem

This section sets up the planning problem in the stochastic version of the model (σ > 0).

We first state the planning problem, provide a characterization of its solution, and show

how it can be decentralized as an equilibrium with subsidies. Section 7.1 characterizes the

steady state of this problem. Section 7.2 uses a linearized version of the problem to analyze

dynamics around the steady state.

The planner solves a non-trivial dynamic problem, since it has as its state the entire

distribution. At time zero the planner solves:

max
{x̄(t)}

{∫ ∞
0

e−rt
∫ U

0

(1/U −m(x, t))︸ ︷︷ ︸
Density of adopters

x (θ0 + θnN(t))︸ ︷︷ ︸
Flow benefit

dx dt

−
∫ ∞

0

e−rtc (Nt(t) + νN(t)) dt︸ ︷︷ ︸
Flow of adoption cost: gross new adoptions

}

subject to

N(t) = 1−
∫ x̄(t)

0

m(z, t)dz for all t

mt(x, t) = −ν (m(x, t)− 1/U) +
σ2

2
mxx(x, t) for x ∈ (0, x̄(t)) and all t ≥ 0 KFE

m(x, t) = 0 for x ∈ [x̄(t), U ] and all t ≥ 0 Adoption

mx(0, t) = 0 for all t ≥ 0 Reflecting

m(x, 0) = m0(x) initial condition

The objective function of the planner integrates the lifetime utility of agents using as a

weight the discount factor e−rt for the cohort born at t. The first term contains the utility

flows of all those using the technology. The second term subtracts the cost of adoption across

time, where Nt(t) + νN(t) is the gross cost of adoption at time t. The planner decides at

each time a threshold x̄(t) which determines adoption, and takes as given the initial condition

m0(x). The planner takes as given the law of motion of the density m that is only affected

through the choice of x̄. The first constraint defines N(t), second is the KFE of the density

of non-adopters. As before, the density of non-adopters is zero to the right of x̄(t), there is

an exit point at x̄(t), and there is a boundary conditions from reflection at zero.

To characterize the solution we form a lagrangian for this problem. We denote the lagrange

multiplier of the KFE equation by e−rtλ(x, t) and replace N(t) and Nt(t) by the corresponding
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integrals. To derive the p.d.e’s for non-adopters, we first adapt the planning problem to

discrete-time discrete-state using a finite-difference approximation. In this set up we allow a

more general policy, i.e. not necessarily a threshold rule. We obtain the first order conditions

for a problem in finite dimensions and take limits to find the corresponding p.d.e’s. We

provide details of this derivation in Appendix F.2. The p.d.e’s corresponding to the planning

problem are summarized in the following proposition.

Proposition 9. A planner problem is given by {x̄(t), λ(x, t),m(x, t)} the path of optimal

threshold so that adoption occurs for x ≥ x̄(t), the Lagrange multiplier λ, and the density of

non-adopters m, respectively, such that the p.d.e. for non-adopters:

ρλ(x, t) = x
(
θ0 + θn[1−

∫ x̄(t)

0

m(z, t)dz]
)

+ θn
(
U
2
−
∫ x̄(t)

0

m(z, t)z dz
)

(29)

+ σ2

2
λxx(x, t) + λt(x, t) for x ≤ x̄(t) and t ≥ 0

λ(x, t) = c for x ≥ x̄(t) and t ≥ 0

λx(x̄(t), t) = 0 for t ≥ 0 (30)

λx(0, t) = 0 for t ≥ 0

and

mt(x, t) = ν
(
1/U −m(x, t)

)
+ σ2

2
mxx(x, t) for x < x̄(t) and t ≥ 0

m(x, t) = 0 for x ≥ x̄(t) and t ≥ 0

mx(0, t) = 0 for t ≥ 0

m(x, 0) = m0(x)

This proposition has two important consequences. First, it allows us to compute the

solution of the planning problem following similar steps as for the computation of equilibrium.

Second, it indicates how to decentralise the optimal allocation as an equilibrium. Let Z(t) ≡
U
2
−
∫ x̄(t)

0
m(x, t)x dx. Comparing the p.d.e. the Lagrange multiplier λ with the p.d.e. for D,

which charcteresizes the equilibrium, we see that the two only differ in the term θnZ(t) in

the flow. Thus, if agents that adopt the technology were given a flow subsidy θnZ(t) every

period after they have adopted, then the planner allocation will be an equilibrium. Note that

θnZ(t) contains the inframarginal valuation of the technolgy for those that use it. So, this

subsity corrects the externality. We sumarize this discussion in the following proposition.

Proposition 10. Fix an initial condition m0 and the solution of the planner’s problem
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{x̄, λ,m}. The planner’s allocation coincide with an equilibrium for the same initial condi-

tions with a time varying subsidy paid to adopters. The flow subsidy paid at time t to those

that have adopted at t or before is given by θnZ(t) where

Z(t) ≡ U
2
−
∫ x̄(t)

0

m(x, t)x dx for all t ≥ 0 (31)

The subsidy θnZ is independent of x.

For future reference we define as Z = Z(x̄;m0) as the solution of the path for Z as defined

in equation (31). In particular, given x̄ and m0, using the KFE one solves for the path of m,

and computing the integral in equation (31) gives Z.

Consider the path x̄ that solves the p.d.e. ρλ(x, t) = x (θ0 + θnN(t))+θnZ(t)+σ2

2
λxx(x, t)+

λt(x, t) with the three boundaries given in equation (30) given the paths of N and Z and

terminal condition λ(x, T ) = λT (x). For future reference, we define x̄ = X P (N,Z;λT ) to

denote the functional, which is defined as the X in Section 2.1 and where the superscript P

denotes the planning problem.

Note that, using the definitions for X P ,Z and N the planner’s problem must satisfy the

fixed point x̄∗ = H(x̄∗, λT ,m0) where H(x̄;λT ,m0) ≡ X P (N (x̄;m0),Z(x̄;m0);λT ). We can

use the same type of analysis, based on monotonicity, to characterize the solution to this

fixed point problem, and to compute it. To simplify we omit this analysis.

We turn next to the description of the steady state of the planning problem.

7.1 Steady State: Planning Problem

A steady state is given by two constants Nss and x̄ss that solve the time invariant version of

the p.d.e. stated in Section 7. The p.d.e. for non-adopters in steady state is

ρλ̃(x) = x
(
θ0 + θnNss

)
+ θnZss + σ2

2
λ̃xx(x) if x ≤ x̄ss KBE

λ̃(x̄ss) = c FOC

λ̃x(x̄ss) = 0 Smooth Pasting

λ̃x(0) = 0 Reflecting

0 = −νm̃(x) + νf(x) +
σ2

2
m̃xx(xx) if x ≤ x̄ss KFE

m̃(x̄ss) = 0 and m̃x(0) = 0
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and given m̃ and x̄ss, Nss and Zss are defined as:

Nss = 1−
∫ x̄ss

0

m̃(x)dx

Zss = U/2−
∫ x̄ss

0

xm̃(x)dx

Recall that λ̃(x̄ss) is the Lagrange multiplier of the law of motion of the density of agents

that have not adopted in steady state. The details of the solution can be found in Ap-

pendix F.3. The following proposition summarizes the solution of stochastic steady state of

the planning problem.

Proposition 11. Let θ̃ss ≡ 1
ρ
(θ0+θnNss) and η ≡

√
2ρ/σ2. For fixed 0 < η <∞ and small

c, x̄ss = 2
(

c
θ̃ss
− θnZss

ρθ̃ss

)
. For the case when σ is small (i.e. η is large), x̄ss = c

θ̃ss
− θnZss

ρθ̃ss
+ σ√

2ρ

Proposition 11 indicates that the solution of the stochastic version of the planning problem

also has the option value present in the decentralized version. This proposition can be used

to conclude that the steady state level of adoption in the planning problem is higher that

the high-activity steady state in the equilibrium.

7.2 Perturbation and stability of steady states

In this section we analyze the linearization of the planning problem around the steady state.

This linearization is analogous to the one for the equilibrium in Section 6.

We approximate x̄(t) = X P (N,Z)(t) by taking the directional derivative (Gateaux) with

respect to arbitrary perturbations n of a constant path N , and z of a constant path Z. In

particular, we consider paths defined by N(t) = Nss + ε n(t) and Z(t) = Zss + ε z(t) around

the steady state Nss and Zss. We will denote this Gateaux derivative by ȳ.

Proposition 12. Let λT be equal to the steady state value function λ̃ corresponding

to that steady state. Let n : [0, T ] → R and z : [0, T ] → R be two arbitrary perturbations.

Then

ȳ(t) ≡ lim
ε↓0

XP(Nss + εn, Zss + εz; λ̃)(t)−X P (Nss, Zss; λ̃)(t)

ε

=

∫ T

t

Gyn(τ − t)n(τ)dτ +

∫ T

t

Gyz(τ − t)z(τ)dτ (32)
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where

Gyn(τ − t) =
θn

λ̃xx(x̄ss)

∞∑
j=0

cje
−ψj(τ−t)n(τ)dτ

Gyz(τ − t) =
2θn

λ̃xx(x̄ss)x̄ss

∞∑
j=0

cje
−ψj(τ−t)z(τ)dτ

and ψj, cj, and γ are defined as in Proposition 7.

Now we turn to the perturbation for the inframarginal value Z as a function of the

thresholds and of a perturbation of the initial condition. We approximate Z(t) = Z(x̄,m0)(t)

by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation y

of a constant path x̄ and a perturbation ω on the steady state m̃. In particular, we consider

paths defined by x̄(t) = x̄ss + ε ȳ(t) around the steady state xss, and m0(x) = m̃(x) + εω(x).

We will denote this Gateaux derivative by z.

Proposition 13. Let m̃ be the corresponding steady state distribution of non-adopters

for the planner. Let ω : [0, x̄ss]→ R be an arbitrary perturbation to the distribution, and let

ȳ : [0, T ]→ R be an arbitrary perturbation of the threshold. Then

z(t) ≡ lim
ε↓0

Z(x̄ss + εy; m̃+ εw)(t)−Z(x̄ss; m̃)(t)

ε

= z0(ω)(t) +

∫ t

0

Hzy(t− s)ȳ(s)ds (33)

where

z0(ω)(t) ≡ −
∞∑
j=0

x̄2
ss(πj + 1

2
− cos(jπ))

π(1
2

+ j)

〈ϕj, ω〉
〈ϕj, ϕj〉

e−µjt and (34)

Hzy(q) = m̃x(x̄ss)σ
2

∞∑
j=0

ηje
−µj q (35)

where ϕj, m̃x, µj and γ are defined as in Proposition 8.

Thus we can write Z(t) = Zss + εz(t) + o(ε). This formula has the effect of two per-

turbations. One is the perturbation on the initial condition m0 given by ω, whose effect is

in the term z0(ω)(t). Alternatively, z0(ω)(t) is the effect at time t on the path Z(t) of a

perturbation of the initial condition keeping the threshold rule x̄ fixed. As in the case of

n0 we can specialize ω by Dirac-delta function δx̂, so that we concentrate the perturbation

around a value x = x̂.
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The proof of this can be found in Appendix F.5.

Theorem 3. Let x̄ss be the steady state of the planner problem, with its corresponding

Nss, Zss, and let m̃ be the corresponding steady state distribution of non-adopters. Let

m0(x) = m̃(x) + εω(x). Let λT be equal to the value function λ̃ corresponding to that steady

state. The linearized equilibrium must solve

ȳ(t) = ȳ0(t) + Θ̃(x̄ss)

∫ T

0

K̃(t, s)ȳ(s)ds where (36)

ȳ0(ω)(t) ≡
∫ T

t

Gyn(τ − t)n0(ω)(τ)dτ +

∫ T

t

Gyz(τ − t)z0(ω)(τ)dτ (37)

where n0 is derived in Proposition 8, z0 is derived in Proposition 13, Θ̃(x̄ss) ≡ θnm̃x(x̄ss)σ2

λ̃xx(x̄ss)x̄ss
and

where the kernel K̃ is given by

K̃(t, s) =
∞∑
j=0

∞∑
i=0

(cj + ci)e
ψjt+µis

(
e−(ψj+µi) max{t,s} − e−(ψj+µi)T

ψj + µi

)
> 0 (38)

We have that LipK̃ ≤
(
x̄2
ss

σ2

)2

. Furthermore, if Θ̃ LipK̃ < 1 there exists a unique bounded

solution to equation (36) which is the limit of

ȳ(t) =
[
I + Θ̃K̃ + Θ̃2K̃2 + . . .

]
ȳ0(ω) where K̃(g)(t) ≡

∫ T

0

K̃(t, s)g(s)ds

and where K̃j+1(g)(t) ≡
∫ T

0
K̃(t, s) K̃j(g)(s) ds for any bounded g : [0, T ]→ R. The operator

K̃ is self-adjoint, and positive definite.

We again consider a perturbation to the steady state density of non-adopters so that

m0(x) = m̃(x) + εδx̂(x) for several values of x̂. In this case, we consider the case of ε > 0, so

that for different values of x̂ the shock resembles a starting equilibrium with lower adoption.

In Panel (a) of Figure 3 we display the time path of the equilibrium n(t) based on the

linear approximation. The figure considers the case of ε = 0.1 for several values of x̂. The

lines are the equilibrium path of n(t), which are monotone in x̂ due to the Feller property

of the Brownian motion. Importantly, Panel (b) shows the equilibrium path of the optimal

subsidy θZ(t) also depends on x̂ and its equilibrium path is not monotone.
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Figure 3: Planning Problem Perturbation: m0(x) = m̃(x) + εδx̂(x)

(a) N(t) (b) x̄(t)

8 Application: SINPE, a digital payment platform

In May 2015, the Central Bank of Costa Rica launched SINPE Móvil (hereafter, SINPE), a

digital platform that allows users to make money transfers between each other using their

mobile phones.7 To use SINPE, users must have a bank account at a financial entity and

link this account to their mobile number.

According to the Central Bank of Costa Rica, SINPE’s main goal was to become a mass-

market payment mechanism that could reduce the demand for cash as a method of payment.

As such, SINPE was originally designed to be used for relatively small transfers, which are

not subject to any fee as long as they do not exceed a daily sum. The maximum daily amount

transferred without a fee varies by bank; for most users, it is approximately $310, although

some banks have lower limits of $233 and $155.8 The average size of transactions in SINPE

is about $50, and has slowly decreased over time, as shown is Figure I3.

8.1 Data

SINPE Transactions Our data on SINPE usage is comprehensive: For each user in the

country, we have official records on the exact date when she adopted the technology, along

with records on each transaction made using accounts across different banks. In particular,

7SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos Electrónicos), in Spanish.

8Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones.
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for each transaction, the data records the amount transacted along with the individual iden-

tifier of the sender and the receiver of the money. Records also include the sender’s andthe

receiver’s bank. Importantly, this information is available, not only for individuals, but also

for firms.

Family Networks and Demographics Data on nationwide family networks is available

from Costa Rica’s National Registry. In particular, these data records, for each citizen, if he

or she is married, to whom, and who their children are. Thus, it is possible to reconstruct

each person’s family tree. We find that the average number of first-degree, second-degree, and

third-degree relatives is 6.4 (median 5), 10.9 (median 9) and 22.0 (median 18), respectively.

The data includes individual identifiers that can be linked to SINPE. The data is dynamic,

meaning that we can see how family networks are changing over time between 2015 and 2021.

The same data source provides details on individual demographics.

Networks of Coworkers, Income, and Occupation Matched employer-employee data

was obtained from the Registry of Economic Variables of the Central Bank of Costa Rica,

which tracks the universe of formal employment and labor earnings. This data set includes

monthly details on each employee, including her occupation, earnings, and employment his-

tory between 2006 and 2021.9 The average number of coworkers in our sample is 4.7 (median

1). Using this data set, we can identify which people are working at the same firm in a given

month to construct networks of coworkers that can be matched to SINPE records. Networks

of coworkers change at a monthly frequency, as people change their employers.

Networks of Neighbors and Residential Location We construct networks of neighbors

for all adult citizens in the country leveraging data from the National Registry and the

Supreme Court of Elections. The data consist of official records on the residence of each

citizen, along with his or her identifier. While the records include each person’s district of

residence, and there are 488 districts across the country, they also include the voting center

which is closest to the citizen’s residence, with 2,059 centers in total. Thus, we leverage the

latter to get a more precise notion of a person’s neighborhood. Approximately, 1,670 adults

are assigned to each voting center, on average (median 613).

Firm-Level Data We leverage data on corporate income tax returns from the Ministry of

Finance, which cover the universe of formal firms in the country and contain typical balance

9It is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),
which is significantly below the Latin American average of 53.1% (ILO, 2002).
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sheet variables, including sales, input costs, and net assets. The data start in 2005 to 2021

and includes details on each firm’s sector and location.

8.2 From Model to Data

We bring the model to the data by interpreting the flow benefit of agents who adopt the

technology as being proportional to how intensively they use SINPE. Specifically, suppose

SINPE users choose the intensity with which they use the application, ξ, maximizing the

following expression:

ξ∗(x,N) = arg max
ξ

1 + p

p

[
β(x,N)ξ − ξ1+p

1 + p

]
where p > 0 so that the problem is convex and β(x,N) > 0. The first order condition

describes the optimal intensity in which the technology is used:

ξ∗(x,N) = β(x,N)1/p (39)

We can choose the function β(x,N) such that the indirect utility function gives the specified

flow benefit, i.e:

[θ0 + θnN ]x = max
ξ

1 + p

p

[
β(x,N)ξ − ξ1+p

1 + p

]
for all x ∈ [0, U ] and N ∈ [0, 1]

The solution turns out to be

β(x,N) = [(θ0 + θnN)x]
p
p+1 . (40)

Combining equation (39) with equation (40), and taking logs

ln ξ∗t =
1

1 + p
ln [(θ0 + θnNt)] +

1

1 + p
lnxt (41)

Under this interpretation of the model, the intensity with which the application is used,

which is observable in the data (e.g. number or value of transactions), is proportional in logs

to the flow benefit of adopting the application as described in the model.

We can separate the effect of Nt and xt by taking differences and using that xt follows a

Brownian motion without drift (e.g. ∆ lnxt is i.i.d.) when is away from the boundaries

∆ ln ξ∗t =
1

1 + p
∆ ln(θ0 + θnNt) +

1

1 + p
∆ log xt
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which can be estimated using non-linear least squares. Alternatively, an approximation

around θn = 0 yields

∆ ln ξ∗t ≈ γ + θ̃∆Nt + εt (42)

where γ is a constant, and where θ̃ ≡ 1
1+p

θn
θ0

and εt is an i.i.d error. We can estimate

equation (42) using a linear specification. The coefficient of interest is θ̃ since strategic

complementarities in the adoption of the technology exist if θ̃ > 0 (i.e. θ0 > 0 and θn > 0).

8.3 Stylized Facts

This section explores the diffusion process of SINPE across time and across networks, along

with the relationship between individual characteristics and technology usage. We document

five facts from the data that align with predictions of the model that we developed.

Fact 1: The technology diffused slowly. The adoption of SINPE has grown at a constant

rate over time, as shown in Figure 4 using monthly data on the total number of adopters.10

By 2021, close to 79% of the adult population in the country owned a bank account, and over

75% of adults were SINPE subscribers who had not deactivated their account. Moreover,

the total value of transactions in SINPE is approximately 10% of GDP. Thus, this setting

has the unique feature of allowing us to study the adoption of mobile payments in the entire

population of the country, across many years since the inception of the technology, and until

it reached almost the universe of the country’s adult population. The fact that adoption

occurs gradually coincides with the dynamics of our dynamic stochastic model, and rules out

the deterministic case in which adoption happens on impact.

Fact 2: Most transactions are peer-to-peer. In theory, firms are allowed to adopt SINPE

and conduct transactions within the app. In practice, however, transactions involving firms

represent a small fraction of all payments. In fact, as shown in Figure I4, individual-to-

individual transactions account for over 95% of all transactions, regardless of the time period

considered.11 This motivates us to study adoption through the lens of our model while fo-

cusing on peer-to-peer transactions only.

Fact 3: Individuals “belong” to networks. We can identify different types of networks for

10The figures include a vertical dashed line at the beginning of the COVID-19 pandemic. As shown, it did
not dramatically change the adoption rate.

11This finding holds if we instead consider unweighted number of transactions, as shown in Figure I5.
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Figure 4: Users, Transactions, and Value of Transactions
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(a) Total Users (b) Number and Value of Transactions

Notes: Panel (a) shows total active SINPE users. We include only active subscriptions, as users have the

option of deactivating their account. Panel (b) shows both total transactions in the application and total

value of transactions. Both figures include a vertical dashed line to mark the start of the COVID-19 pandemic.

each user. In particular, we could identify which transactions take place within an individual’s

network of neighbors, coworkers, or relatives. To do so, we construct the network of neighbors

of each user—which would correspond with the people assigned to her voting center—and

calculate the number and total value of SINPE transactions involving another user who

also resides in the same neighborhood. Similarly, we construct the network of coworkers for

each employed user based on employer-employee data. Finally, we construct family networks

taking into account relatives up to a third-degree of kinship.

In Table 1, we document that most transactions involve a counterpart who belongs to al

least one of these networks.12 Half of all transactions have a neighbor as counterpart, about

45% of all transactions are among coworkers, and 41% are conducted with relatives. We can

also consider the union of all three networks described above, and document that about three-

quarters of all transactions take place with someone within at least one of the three types of

networks. Moreover, we also document that users have relatively few peers with whom they

transact. Before 2019, each user had less than two distinct connections per month, both as a

sender and as a receiver. By the end of 2021 this number had increased; each user had just

over six distinct monthly connections and the average total number of distinct connections

per user was 44, i.e. people do not necessarily transact with the same six peers each month.13

12Table 1 calculates shares using 2018 data; the midpoint of our sample period. Results remain quite
similar if, instead, we consider the average shares of transaction for the entire sample period, as shown in
Table I1.

13Average monthly patterns are documented in Figure I6.
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The average transaction size is $50, and has decreased slowly over time, as shown in Figure I3.

Table 1: Share of Transactions Within Network

(1) (2) (3) (4)

Neighborhood Firm Family Union of all three

0.75
Neighborhood 0.50
Firm 0.66 0.45
Family 0.60 0.67 0.41

Notes: We construct average shares using data on transactions per user from 2018, i.e, the middle
of our sample period. Shares using the entire sample—from May 2015, when the technology was
introduced, to December 2021—are shown in Table I1.

Fact 4: The adoption of the technology across networks was staggered. We empirically

explore the dynamics of adoption for SINPE across networks and show that the early stages

feature an S shaped profile. This profile is qualitatively similar to what is produced by the

learning model, suggesting that initial awareness of SINPE was uneven across networks. We

classify networks (i.e. neighborhoods) according to their level of adoption. In particular, we

calculate the share of individuals within a network who had adopted SINPE by December

2021, the last period available in our data set. We then compute percentiles of this share

across networks to generate a distribution. Panel (a) of Figure 5 shows the timing of adoption

across different percentiles. We measure the timing of adoption as the period in which we

first see an individual within a network adopting. Panel (a) shows that networks with the

largest shares of adopters also adopted the technology first; in fact, networks with the highest

penetration of the technology adopted instantly after the technology was launched. On the

other hand, networks with the lowest penetration took more than a year and a half to start

adopting the technology. Panel (b) shows the diffusion path of the technology for the median

neighborhood. It shows that the technology was adopted gradually within networks. Taken

of together, these panels show that networks which adopted the technology early also tend

to have higher penetration throughout our sample period. While Figure 5 is computed based

on networks of neighbors, the same patterns emerge when analyzing networks of coworkers

and relatives, as shown in Figure I9.
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Figure 5: Entry and Diffusion Across and Within Networks of Neighbors
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(a) Entry Across Networks (b) Diffusion Within Network

Notes: Panel (a) shows the timing of adoption across networks, defined as neighborhoods. It shows the

entry date (first time an individual within a network adopts the technology) across different percentiles of

the distribution of networks. Percentiles are calculated in the last period of the sample using the share of

individuals that had adopted the technology. Panel (b) uses the same classification of percentiles to show

the patterns of diffusion of the technology within networks.

Fact 5: There is evidence of selection at entry. Through the lens of our model, early

adopters—who started using the technology even when the network was small—should be

more intense users (with higher x). Consistent with this notion, we document that early

adopters have distinct characteristics as compared with users who adopted later. For this

exercise, and the ones that follow, we classify an individual as an adopter from the time she

first used the app onward. First, as shown in Figure 6, we find that early adopters have a

higher average wage as compared with individuals who adopted later (Panel (a)), and are

on average more high-skill (Panel (b)).14 Early adopters are also younger, on average, than

later adopters, as shown in Figure I7.

Second, let us recall the model-derived relationship between intensity of usage (ξnit) and

the share of an user’s i network that had adopted when she used the app for the first time

(Nn
i,entry):

ln ξnit = γ + βNn
i,entry + λnt + νnit,

where n ∈{neighbors, coworkers, relatives} and ξnit is defined as number of transactions of user

i each month t. Our model predicts that β < 0, as users who adopted the app (“entered”)

when the network was smaller should have a higher idiosyncratic taste for the app and use

14We classify an occupation as high-skill if it requires education or training beyond a high-school diploma.
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it more intensively.

We estimate β̂ to be −2.7, with a standard error of 0.004 when defining a network as a

neighborhood. This relationship is shown in Column (1) of Table 2, and while suggestive,

points to the presence of selection at entry. It is worth mentioning that this estimation

includes network-time effects, thus, the inverse relationship that we document is not just

mechanical. The relation is also robust to defining networks using coworkers and relatives,

as shown in Columns (2) and (3) in Table 2. The relation also holds if, instead of the total

number of transactions, we consider the value of transactions as our dependent variable, as

reported in Table I2.

Figure 6: Average Wage and Skill at the Time of Adoption
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(a) Wage (b) High Skill

Notes: Panel (a) shows the cross-sectional distribution of SINPE users’ wages. Panel (b) shows the cross-

sectional distribution of SINPE users’ skills. High skill users are those that are in an occupation that requires

more than a high school degree.
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Table 2: Number of Transactions and Size of Network at Entry

Dependent variable: Number of Transactions (logs)

(1) (2) (3)

Size of Neighbors’ Network at Entry -2.702***
(0.004)

Size of Coworkers’ Network at Entry -0.739***
(0.013)

Size of Family Network at Entry -0.833***
(0.002)

Observations 7,135,126 163,050 6,742,411
R-squared 0.070 0.020 0.018
Network×Time FE Yes Yes Yes

Notes: The dependent variable in this estimation is the number of transactions each month for
each user, which we transform using the inverse hyperbolic sine function: ln(ξ +

√
ξ2 + 1). The

coefficients describe the effect of increasing the share of an individual’s network who had adopted
the app at the time when she downloaded it. We run regressions using data from May 2015, when
the technology was introduced, to December 2021.

Fact 6: There is evidence of strategic complementarities. The core idea behind strategic

complementarities is that usage benefits increase in the size of an user’s network. To test for

the presence—albeit suggestive—of these externalities along the intensive margin of adoption,

we consider the following version of equation (42):

∆ ln ξnit = γ + θ̃∆Nn
t + λt + νnit, (43)

where ln ξnit, the intensity with which individual i uses the technology, can be interpreted as

either the value or the number of SINPE transactions in a given month t, Nn
t is share of user

i’s network that has adopted the app, and we include time fixed-effects, λt. Again, networks

can be defined in different ways, and as such n ∈{neighbors, coworkers, relatives}. This

regression has several advantages. First, it considers only the intensive margin of adoption,

and thus allows us to isolate the effect of strategic complementarities from any other learning

externalities which might be active when studying the extensive margin of adoption.15 Sec-

ond, as the regression is in changes, individual effects which might affect usage cancel out,

including the effect of the idiosyncratic taste (x), as it follows a random walk.

Table 3 shows results when considering n as a user’s network of neighbors, network of

coworkers, and network of relatives. While the dependent variable in this table consistently

refers to the number of SINPE transactions, Panels (a), (b) and (c) consider different speci-

15For instance, an individual might be more likely to learn about the existence of the app if she has more
friends who have adopted the app.
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fications. Panel (a) runs the regression with a dependent variable in logs. Panel (b) repeats

the exercise transforming the value of transactions following Davis and Haltiwanger (1992).16

Panel (c) shows our results when transforming the value of transactions using an inverse

hyperbolic sine function ln(ξ +
√
ξ2 + 1). The last two panels were used, in particular, as it

is frequent to find zero transactions for individuals in a given month, even after they adopt

the technology.

Across specifications, we find that θ̃ remains positive and statistically significant. Further,

the coefficients corresponding with each network remain stable when considering all of them

simultaneously in Column (4) of Table 3. All findings remain unchanged if we consider the

monthly value of transactions of each user as our dependent variable instead of the number

of transactions, as reported in Table I3. Similarly, results are robust to including controls for

COVID-19 and cohort fixed-effects, as shown in Table I4, Table I5, and Table I6.

It is also possible to use an alternative measure of n, which will by construction compre-

hend all transactions. Namely, we take the last period in our sample (December 2021)—in

which most adults have already adopted—as our starting point, and then look back in time

at all transactions which have occurred. Then, for each individual, we define her network as

the collection of people with which she transacted at some point in time. Thus, for instance,

the share of adopters in someone’s network in 2016 will have all her connections who have

adopted in the numerator, and all her past and future connections in the denominator. Ta-

ble 4 shows the results of estimating equation (43) using this alternative network and the

number of transactions per user as our dependent variable.17 The positive and correlation

between changes in usage and in share of adopters within network is always present across

specifications.

8.4 Identification: Changes in Networks of Coworkers After a

Mass Layoff

Fact 5 in the previous section documented a correlation between the intensity with which

someone uses the app and the share of individuals in her network who have adopted it. In

this section, we consider an identification strategy to claim that this relationship is causal.

This strategy focuses on the network of coworkers and implements a movers design where we

follow workers fired during a mass layoff.

We focus on the workers displaced during mass layoffs to examine the effect of network

changes on the extensive and intensive margins of adoption.18

16Namely, we consider ∆xt = 2xt−xt−1

xt+xt−1
, where x is the value of transactions for each individual.

17Table I7 displays results considering instead the value of transactions per user.
18To define a mass layoff, we follow Davis and Von Wachter (2011) and identify establishments with at
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Table 3: Changes in Number of Transactions and Network Changes

Dependent variable: ∆ Number of Transactions

(1) (2) (3) (4)
(a) Logs

∆ Share Neighborhood Adopters 1.899*** 1.699***
(0.029) (0.037)

∆ Share Coworkers Adopters 0.152*** 0.144***
(0.006) (0.006)

∆ (Log) Wage 0.043*** 0.043***
(0.001) (0.001)

∆ Share Relatives Adopters 0.249*** 0.253***
(0.004) (0.005)

Observations 23,111,087 14,933,546 21,714,054 14,004,164
R-squared 0.018 0.022 0.019 0.022
Time FE Yes Yes Yes Yes
RMSE 0.743 0.720 0.742 0.719

(b) Davis & Haltiwanger

∆ Share Neighborhood Adopters 1.617*** 1.457***
(0.025) (0.032)

∆ Share Coworkers Adopters 0.127*** 0.120***
(0.005) (0.005)

∆ (Log) Wage 0.038*** 0.038***
(0.001) (0.001)

∆ Share Relatives Adopters 0.211*** 0.215***
(0.003) (0.004)

Observations 23,111,087 14,933,546 21,714,054 14,004,164
R-squared 0.019 0.022 0.019 0.023
Time FE Yes Yes Yes Yes
RMSE 0.643 0.627 0.642 0.626

(c) Inverse hyperbolic sine

∆ Share Neighborhood Adopters 1.815*** 1.627***
(0.028) (0.035)

∆ Share Coworkers Adopters 0.143*** 0.134***
(0.005) (0.005)

∆ (Log) Wage 0.041*** 0.041***
(0.001) (0.001)

∆ Share Relatives Adopters 0.237*** 0.240***
(0.004) (0.004)

Observations 23,111,087 14,933,546 21,714,054 14,004,164
R-squared 0.019 0.022 0.019 0.023
Time FE Yes Yes Yes Yes
RMSE 0.703 0.682 0.702 0.681

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors are in parentheses.
Extreme values (one and 99 percentile) were trimmed from the dependent variables.
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Table 4: Changes in Intensity of Usage and 2021 Network Changes

Dependent variable: %∆ Number of Transactions

(1) (2) (3)

Logs Davis & Haltiwanger Inverse hyperbolic sine

∆ Share Adopters in 2021 Network 1.815*** 1.950*** 1.580***
(0.007) (0.008) (0.006)

Observations 23,512,962 27,532,941 31,682,276
R-squared 0.022 0.017 0.017
Time FE Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors, clustered by individual,
are in parentheses.

Extensive Margin of Adoption For the extensive margin, we consider the change in the

probability of adoption for displaced workers who had not downloaded the app by the time

they were rehired depending on the change in the share of coworkers who had SINPE at their

old and new firm. The main hypothesis of this exercise is that workers who were displaced

during a mass layoff, and who ended up at firms where a larger share of colleagues had SINPE

(larger N), have larger incentives to adopt via the effect of strategic complementarities. We

consider:

Adopti = α + θ̂∆N coworkers
i + γ̂∆ lnwagei + λ̂date hiredi + ω̂∆Covidi + εi, (44)

where Adopti equals one if individual i adopted SINPE within 6 months after arriving to her

new firm, and zero otherwise; ∆N coworkers
i is the change between the share of coworkers who

had adopted at the old and the new employer; ∆ lnwagei corresponds with the change in the

average wage (in logs) across 6 months before the layoff and after the rehiring; date hiredi

controls for the date in which individual i was hired by the new firm; and ∆Covidi controls

for the change in the cumulative COVID-19 cases (transformed using the inverse hyperbolic

sine function) in the individual’s neighborhood across the 6 months before the layoff and

after the rehiring. Appendix J provides more details on each of these variables.

Table 5 shows the results estimating equation (44) using a logit model. The marginal

effects of changes in network adoption are reported in brackets. We consistently find that

workers who, after a mass layoff, were hired by firms where the rate of SINPE adoption was

higher than their previous employer’s are more likely to adopt SINPE than their counterparts

least 50 workers that contracted their monthly employment by at least 30% and which had a stable workforce
before this episode and did not recover in the following 12 months. More details are provided in Appendix J.
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Table 5: Extensive Margin of Adoption and Changes in Coworkers’ Network After a Mass
Layoff

Dependent Variable: Adopti (Logit)

(1) (2) (3)

∆N coworkers
i 8.198*** 5.157*** 4.792***

(0.105) (0.130) (0.135)
[0.423] [0.308] [0.283]

∆ lnwagei -0.036 -0.038
(0.026) (0.027)

∆Covidi 0.112***
(0.014)

Observations 32,620 27,797 27,797
Time FE No Yes Yes

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, until December 2021. Standard
errors are in parentheses. Marginal effects for the main variable of interest are reported in brackets.

who moved to firms where the change in their coworkers’ rate of adoption was smaller. The

marginal effect of ∆N coworkers
i , under the specification described by Column (3) of Table 5,

is shown in Figure 7. This marginal effect is monotonous and—as expected—is present only

when the change in the share of adopters who had adopted is positive.

Intensive Margin of Adoption It is also possible to estimate the relationship between

share of adopters within one’s network and intensity of usage. To do so, we again focus on

workers who were fired during a mass layoff, but this time consider only displaced workers

who had already adopted and had used SINPE at least once by the time they were fired. We

then examine how the intensity with which they use the app changes depending on the

change in the share of coworkers who had SINPE at their old and new firm. As explained

in the previous subsection, it is possible to derive the relationship in equation (43) from

our theoretical model, which speaks to the technology’s intensity of usage. Similarly as in

equation (43), we consider:

∆ ln ξ̃i = α̃ + θ̃∆N coworkers
i + γ̃∆ lnwagei + λ̃date hiredi + ω̃∆Covidi + δ̃cohorti + ε̃i, (45)

where ∆ ln ξ̃i refers to the change in monthly intensity with which individual i used SINPE

within 6 months after arriving to her new firm compared with 6 months before being fired,

cohorti controls for the date when individual i adopted SINPE, and other variables are defined
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Figure 7: Marginal Effect of Network Changes on Adoption Probability
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Notes: This figure plots the marginal effect of ∆N coworkers
i in the specification described by Column

(3) of Table 5. Bars denote 95% confidence intervals.

in the same way as in equation (44).19

Table 6 displays our results using the number of transactions per user as our dependent

variable.20 As with the extensive margin, changes in the intensity of usage depend positively

and significantly on the change in the share of adopters at the old and new firm. Figure 8

displays the marginal effect of these network changes following the specification described by

Column (3) of Table 6. As Figure 8 shows, not only is the relationship between usage and

network changes positive, but also whenever a worker moves to a firm with a lower adoption

rate, her usage decreases (i.e. the change on the vertical axis is negative).21

Column (4) controls for cohort, i.e. date of adoption, and intends to mitigate any effect

of more experienced users behaving differently than beginners. Interestingly, as compared

with Column (3), adding this control does not change the coefficient of interest. This result

aligns with the following intuition: while at the extensive margin it is hard to disentangle

between strategic complementarities and “learning from others” about the technology, at the

intensive margin—once users have already adopted and used the app—a learning story is less

plausible, as reflected by θ̃ not changing after controlling for cohort.

19Appendix J provides more details on these variables and the choices made to conduct this exercise.
20Table I8 reports the same results with the value of transactions as dependent variable.
21The marginal effect considering the value of transactions as dependent variable, as opposed to the number

of transactions, is reported in Figure I8.
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Table 6: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff

Dependent Variable: ∆ Number of transactions (inverse hyperbolic sine)

(1) (2) (3) (4)

∆N coworkers
i 2.581*** 1.873*** 1.172*** 1.173***

(0.122) (0.131) (0.141) (0.143)
∆ lnwagei 0.377*** 0.335*** 0.321***

(0.032) (0.031) (0.032)
∆Covidi 0.188*** 0.206***

(0.016) (0.017)

Time FE No Yes Yes Yes
Cohort FE No No No Yes
Observations 2,585 2,585 2,585 2,585
R-squared 0.160 0.268 0.309 0.324

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, until December 2021. Standard
errors are in parentheses.

Figure 8: Marginal Effect of Network Changes on Usage Intensity
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Notes: This figure plots the marginal effect of ∆N coworkers
i in the specification described by Column

(3) of Table 6. Bars denote 95% confidence intervals. The dependent variable in this estimation is
the number of transactions (transformed using the inverse hyperbolic sine function) on each period
for each user.
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9 Quantitative Performance and Optimal Subsidy

In this section, we calibrate our model and evaluate its performance relative to the data of

SINPE Mobile. We begin by describing an extension of the model that combines the model

of strategic complementarities with the learning model. This extension is helpful to make the

model consistent with some features of the data. We then describe our calibration procedure

in detail.

A Learning Model with Strategic Complementarities: Using the derivations of the

previous section, it is straightforward to extend our benchmark model of strategic comple-

mentarities to include random diffusion of the technology across agents. The variational

inequality of the adoption decision, the value of an agent that already has adopted the tech-

nology a(x, t) and the value of waiting v(x, t), are the same as in the model with strategic

complementarities since these decision are made after agents are aware of the technology. On

the other hand, the law of motion of m needs to be modified to include the inflow of informed

agents as in the learning model.

mt(x, t) =
σ2

2
mxx(x, t) +

β0

U
I(t)(1− I(t))− νm(x, t) all t ≥ 0 and x ∈ [0, x̄]

m(x, t) = 0 all t ≥ 0 and x ∈ [x̄, U ]

where I(t) is given by equation (78) and, as before, β0 indicates the number of meetings

per unit of time. The reflecting barrier of x at zero implies 0 = mx(0, t) for all t ≥ 0 and

continuity of m implies that m(x̄, t) = 0 all t ≥ 0.

Calibration: By Lemma 1, the problem with strategic complementarities features 5 in-

dependent parameters as U and θ0 can be normalized without affecting the nature of the

solution: ν, ρ, θ̃, σ̃, and c̃, where the tilde indicates the normalized parameters.22 In addition,

the model that includes learning requires an additional parameter to be calibrated, β0, as

well as an initial condition for the population that is informed, I(0).

We calibrate ν to 0.0278 in order to match the rate at which agents stop using SINPE in

the data. This is the average fraction of agents in 2019-2021 that had adopted SINPE but

did not conduct a single transaction using the application the following year. We use the

last three years of the data, when the adoption rate is higher, to focus on periods closer to

steady state. We set the discount factor r to be consistent with a 5 percent annual interest

rate. This value is a lower bound for r; this parameter can admit higher values if we assume

22c̃ ≡ c
Uθ0

, σ̃ ≡ σ
U , and θ̃ ≡ θn

θ0
.
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that agents expect new technologies to arrive in the future and replace SINPE. The values

of ν and r imply ρ = r + ν = 0.0778.

We interpret the flow benefit of agents who adopt the technology as being proportional

to how many transactions they conduct (i.e. how intensively they use SINPE). Thus, we

set θ̃ = 1.8, which is consistent with our estimates in Table 3 when we define networks as

neighborhoods and assume a quadratic cost of making transactions (i.e. p = 1).

We set σ̃ = 0.032 to reflect the variation of transactions conditional on the size of the

network of neighbors. To be more precise, we use the residuals obtained from the estimation

of equation (43) and calculate the standard deviation. We adjust this estimate to reflect that

the regression is estimated in logs and for the range of transactions (i.e. U). In particular,

in discrete time xt+∆ − xt =
√

∆σεt+∆. Since we estimate equation (42) in logs, in the data

we estimate:

Et
[

(xt+∆ − xt)
xt

]
≈ Et((xt+∆ − xt)2)

Et(xt)
=

∆σ2

Et(xt)

where the approximation is to a first order. We obtain estimates of Et(xt) and U using the

distribution of transactions. Specifically, in the data, the average number of transactions per

year is 95 and the 99th percentile is 775. We find U by noticing that the upper bound of the

distribution of transactions must equal to
[
U(1 + θn

θ0
)
] 1

1+p
(i.e. x = U and N = 1).

We set c̃ = 9 to match the fraction of the population that has adopted the technology

by the end of 2021. This value implies that approximately 90% of the population adopts in

steady state. Lastly, we set β0 = 1.3 to match the path of technology adoption for the median

neighborhood in the data. We display the path of adopters starting at I(0) = 0.001, that is,

0.1 percent of population is informed about SINPE Mobile at the time it was launched.
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Figure 9: Path of Adopters (Short-Run and Long-Run)

(a) Model vs Data (b) Long-Run Path

Notes: Panel(a) compares the path of adopters in the model and in the data. The solid red line shows the

patterns of diffusion of the technology in the median neighborhood, where the percentile is calculated in the

last period of the sample using the share of individuals that had adopted the technology. The dashed red

lines show the 25th and 75th percentiles. Panel (b) shows the share of informed agents, I(t), the share of

adopters, N(t), and the levels of x̄(t) predicted by the model under our baseline calibration.

Panel (a) of Figure 9 compares the path of adoption in the model and in the data. The

solid red line indicates the diffusion of the technology in the median neighborhood and the

dashed lines represent the 25th and 75th percentiles. The figure shows that under our baseline

calibration, both the speed and the levels of adoption generated by the model are consistent

with those in the data. Panel (b) shows the path of I(t), N(t) and x̄(t). The figure shows

that most people are informed about the technology within the first 7 years. In steady state,

approximately 97.5% of the population know about the application. The figure also shows the

long-run level of N(t). The model predicts that in steady state 90% of the population living

in the median neighborhood will adopt the application. Lastly, the path of x̄(t) indicates

that, consistent with our empirical evidence, there is selection in the model; agents that

benefit the most from the technology adopt first. This can be seen by the declining path of

x̄(t).
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Figure 10: Path of Adopters: Only Learning (Short-Run and Long-Run)

(a) Model vs Data (b) Long-Run Path

Notes: Panel(a) compares the path of adopters in the model and in the data when θn = 0. The solid red

line shows the patterns of diffusion of the technology in the median neighborhood, where the percentile is

calculated in the last period of the sample using the share of individuals that had adopted the technology.

The dashed red lines show the 25th and 75th percentiles. Panel (b) shows the share of informed agents, I(t),

the share of adopters, N(t), and the levels of x̄(t) predicted by the model under our baseline calibration and

θn = 0.

Figure 10 shows the performance of the model under our baseline calibration but with

θn = 0. It shows that, without strategic complementarities, the levels of adoption by the

end of 2021 (6 and a half years after the launch of SINPE) would be around 20%. Panel (b)

shows that the path of x̄(t) in the model with only learning is flat, which indicates that this

version of the model does not feature selection in the adoption of the technology as observed

in the data.

Optimal Subsidy: Panel (a) of Figure 11 shows the optimal adoption path relative to the

path of adopters from the decentralized equilibrium. During the first four years after the

launch of the technology, the optimal level of adoption are similar to those of the equilibrium

without subsidy. The optimal path of adopters from the planning problem is higher than that

of the equilibrium. In fact, by the end of 2021, it is equal to the total number of informed

agents in the economy, 30 percentage points higher than the levels of adoptions observed in

the data. Panel (b) shows the path of the optimal subsidy. As the share of adopters increase,

so does the adoption externality. As a result, the optimal subsidy, which is the same across

agents, also increases over time. Over time, that the optimal subsidy pushes the economy to

universal adoption.
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Figure 11: Planning Problem: Solution and Optimal Subsidy

(a) Optimal Path of Adopters (b) Optimal Subsidy

Panel (a) shows the share of informed agents, I(t), the share of adopters in the decentralized model, N(t), and

the optimal levels of adoption, N(t) (optimal), according to the solution of the planning problem. Panel (b)

shows the path of the optimal subsidy θnZ(t) and the flow benefit of the average adopter, Z(t)(θ0 +θnN(t)).

10 Conclusion

Understanding the adoption process of a technology and the transition from low to high

adoption is challenging, especially in the presence of strategic complementarities. This paper

develops a new dynamic model of technology adoption which allows us to model this transition

leveraging tools form mean field game theory. The model provides a framework to characterize

the process of learning, generates slow adoption through a novel mechanism—waiting for

others to adopt—and allows us to derive predictions that can be tested empirically.

We also solve for the social planner’s problem. The planner in our setup controls the entire

distribution of adopters across time. The presence of strategic complementarities enrich the

problem and allow us to link our results to the “big push” literature, as they imply that

small subsidies can lead to large changes in adoption given the multiplicity of equilibrium.

We show that, in our framework, the optimal subsidy increases over time but it is flat, thus,

easily implementable.

Our application consists of analyzing electronic methods of payment, which are partic-

ularly relevant today and are undertaking a digital transformation. This revolution has

been echoed by a growing interest from monetary authorities to promote and develop digi-

tal payment platforms, both in developed and developing countries. Using individual- and

transaction-level data on SINPE, a national electronic payment system adopted by most of
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the adult population in Costa Rica, along with extensive data on the networks of each user,

we document that strategic complementarities play an important role in the adoption of this

technology.

SINPE also provides a rich environment to calibrate our both the descentralized equilib-

rium and the planning problem in our model, which allows us to estimate, for instance, the

optimal time-varying adoption subsidy and the degree of selection into adoption across time.

These results have implications for the launch and implementation of payment technologies

with similar features such as CBDCs.

The methodology we develop can be useful for wide set of multidimensional dynamic

problems, and the model can be applied to studying any technology that features strategic

complementarities, learning, or both. Moreover, the setup is simple but can lead to interesting

extensions, for instance, a drift in the idiosyncratic benefit of adoption could be key to

understand other technologies with adoption costs that decrease or increase over time.
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APPENDIX

A Discretization and Computation of Equilibrium

In this section, we describe an algorithm to compute the equilibrium. It is based on finding

a fixed point of the finite difference approximation of the HBJ equation and the Kolmogorov

forward equation.

We define the discretization of the model as follows:

Definition 2. A discretized version of the model is defined by positive integers I, J which

determine the time and space step sizes: ∆t = T
J−1

and ∆x = U
I−1

. Thus t ∈ T ≡ {∆t(j− 1) :

j = 1, . . . , J} and x(t) ∈ X ≡ {∆x(i − 1) : i = 1, . . . , I}. The reflecting BM is replaced

by a process with: x(t + ∆t) = x(t) ±∆x each with probability q = 1
2
σ2∆t

(∆x)2/(1 − ν∆t), and

x(t + ∆t) = x(t) with probability 1 − 2q for 0 < x(t) < U . If x(t) = 0 or x(t) = U , then

x(t + ∆t) = x(t), with prob. 1 − q, and x(t + ∆t) = ∆x, or x(t + ∆t) = U − ∆x with

probability q. Agents die with probability ν∆t, and use a discount factor (1 − ∆tr). The

period flow of those that adopted the technology is [θ0 + θnN(t)]x(t)∆t. Agents that die are

replaced by other whose x is drawn from a uniform discrete distribution with probabilities

∆x/U for each x. For any 0 < ∆t < 1/(r + ν), the value of J , and hence ∆x must be chosen

so that 0 < q ≤ 1/2. In this case the value functions v and a can be represented as a vector

on v ∈ RI×J , the distribution of non-adopters m ∈ RI×J
+ , threshold path x̄ : T→ X, and the

path of the measure of adopters N : T → [0, 1]J . The initial condition is given by m0 ∈ RI
+

and the terminal value by vT ∈ RI
+.

Next we derive and describe the decision problem in discrete time using HBJ, and later

derive and describe the discrete time version of the Kolmogorov forward equation.

A.1 Finite Difference computation of HJB for v, a given N

In this section we derive the finite difference approximation for a(x, t) given the path N =

{Nj}Jj=1.

ρaij = xi (θ0 + θnNj) +
σ2

2

[
ai+1,j − 2ai,j + ai−1,j

(∆x)2

]
+
ai,j − ai,j−1

∆t
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for i = 2, 3, . . . , I − 1 and j = 2, 3, . . . , J − 1, which can be rearranged to give:

ai,j−1 = ∆t xi (θ0 + θnNj) +
σ2∆t

2(∆x)2
[ai+1,j − 2ai,j + ai−1,j] + ai,j − ρ∆tai,j

Thus we define:

p =
σ2

2

∆t

(∆x)2

1

(1− ρ∆t)
(46)

and write:

ai,j−1 = ∆t xi (θ0 + θnNj) + (1− ρ∆t) [pai−1,j + (1− 2p)ai,j + pai+1,j] (47)

for i = 2, 3, . . . , I − 1, and j = 2, 1, J − 1, and

a1,j−1 = ∆t x1 (θ0 + θnNj) + (1− ρ∆t) [(1− p)a1,j + pa2,j] (48)

aI,j−1 = ∆t xI (θ0 + θnNj) + (1− ρ∆t) [paI−1,j + (1− p)aI,j] (49)

for j = 2, . . . , J − 1 and at the terminal time we impose:

ai,J = ai,T for i = 1, 2, . . . , I (50)

If we require that p ∈ (0, 1) and 1− 2p ∈ (0, 1) then

1

∆t

=
J − 1

T
> ρ and

σ

√
∆t√

1− ρ∆t

= σ

√
T√

J − 1− ρT
< ∆x =

U

I − 1

We will use aT = ã, i.e. the steady state ã given Nss as:

ãi = ∆t xi (θ0 + θnNss) + (1− ρ∆t) [pãi−1 + (1− 2p)ãi + pãi+1] (51)

for i = 2, 3, . . . , I − 1 and

ã1 = ∆t x1 (θ0 + θnNss) + (1− ρ∆t) [(1− p)ã1 + pã2] (52)

ãI = ∆t xI (θ0 + θnNss) + (1− ρ∆t) [pãI−1 + (1− p)ãI ] (53)
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Now we set the equations for v using a. Following a similar derivation we get:

vi,j−1 = max {−c+ ai,j , (1− ρ∆t) [pvi−1,j + (1− 2p)vi,j + pvi+1,j]} (54)

for i = 2, 3, . . . , I − 1, and j = 2, 1, J − 1, and

v1,j−1 = max {−c+ a1,j , (1− ρ∆t) [(1− p)v1,j + pv2,j]} (55)

vI,j−1 = max {−c+ aI,j , (1− ρ∆t) [pvI−1,j + (1− p)vI,j]} (56)

for j = 2, . . . , J − 1 and at the terminal time we impose:

vi,J = vi,T for i = 1, 2, . . . , I

Given v and a we can compute x̄, which correspond to an J dimensional array as:

x̄j = min
{i=1,...,I}

{xi : vi,j = −c+ ai,j} for all j = 1, 2, . . . , J

īj = min
{i=1,...,I}

{i : vi,j = −c+ ai,j} for all j = 1, 2, . . . , J so that

x̄j = xīj for all j = 1, 2, . . . , J

We let X be the set:

X =
{
{xj}Jj=1 : xj = (i− 1)∆x each i = 1, 2, . . . I and j = 1, 2, . . . , J

}
We will use vT = ṽ, the steady state ṽ given ã as:

ṽi = max {−c+ ãi , (1− ρ∆t) [pṽi−1 + (1− 2p)ṽi + pṽi+1]} (57)

for i = 2, 3, . . . , I − 1 and

ṽ1 = max {−c+ ã1 , (1− ρ∆t) [(1− p)ṽ1 + pṽ2]} (58)

ṽI = max {−c+ ãI , (1− ρ∆t) [pṽI−1 + (1− p)ṽI ]} (59)

A.2 Finite Difference approximation of KFE for m given x̄

In this section we derive the finite difference approximation for m(x, t) given the path x̄ =

{x̄j}Jj=1. We let īj the index for which x̄j = xīj for all j.
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mi,j+1 −mi,j

∆t

=
σ2

2

[
mi+1,j − 2mi,j +mi−1,j

(∆x)2

]
− ν

(
mi,j −

1

U

)
for i = 2, 3, . . . , īj − 1

mi,j+1 = 0 for i = īj, . . . , I

and j = 1, 2, . . . , J . We can rewrite the first equation as:

mi,j+1 =
σ2

2

∆t

(∆x)2
[mi+1,j − 2mi,j +mi−1,j]− ν∆t

(
mi,j −

1

U

)
+mi,j for i = 2, 3, . . . , īj − 1

mi,j+1 = 0 for i = īj, . . . , I

Defining q as

q =
σ2

2

∆t

(∆x)2

1

(1− ν∆t)
(60)

we can write it as:

m1,j+1 = (1− ν∆t) (qm2,j + (1− q)m1,j) + ν∆t
1

U
(61)

mi,j+1 = (1− ν∆t) (qmi+1,j + (1− 2q)mi,j + qmi−1,j) + ν∆t
1

U
for i = 2, 3, . . . , īj − 1 (62)

mi,j+1 = 0 for i = īj, . . . , I (63)

and j = 1, 2, . . . , J ,

mi,1 = m0(xi) and i = 1, 2, . . . , I (64)

Given m we can compute the corresponding N , i.e.:

Nj = 1−

(
I∑
i=1

mi,j∆x −m1,j∆x/2−mīj−1,j∆x/2

)
for j = 1, 2, . . . , J (65)

This gives N (x̄;m0).

There is also the corresponding steady state version for m̃, given the index īss:

m̃1 = (1− ν∆t) (qm̃2 + (1− q)m̃1) + ν∆t
1

U

m̃i = (1− ν∆t) (qm̃i+1 + (1− 2q)m̃i + qm̃i−1) + ν∆t
1

U
for i = 2, 3, . . . , īss

m̃i = 0 for i = īss, . . . , I
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and

Nss = 1−

(
I∑
i=1

m̃i∆x − m̃1∆x/2− m̃īss−1∆x/2

)

A.3 Computing Equilibrium Set

In this section we set up the fixed point given an initial condition m0 and terminal value

functions vT = ṽ, aT = ã and DT = aT − vT for some steady state. Recall that F : [0, 1]J →
[0, 1]J is defined as in equation (6). Thus, successive paths for N are indexed by k and

computed as

Nk+1 = F
(
Nk;m0, DT

)
≡ N

(
X
(
Nk;DT

)
;m0

)
for k = 0, 1, 2, . . .

for some initial condition N0. To compute the equilibrium with the lowest path for N we

start with the initial condition N0 = {0, 0, . . . , 0}. To compute the equilibrium with the

highest path for N we start with the initial condition N0 = {1, 1, . . . , 1}. The convergence

of Nk for large k is ensured by Tarski’s theorem.

In Figure A1 we compare the computation that follows from discretizing time and state

space with the one that comes from linearizing the model, i.e. our perturbation. Both

computations start with the same initial conditions. For this figure we take as terminal value

function the steady states values corresponding to the high adoption equilibrium, i.e. high

value of Nss and low value of x̄ss. The common initial condition is one where m0(x) = m̃(x)/2.

We make two remarks about the initial condition. First, it amounts to starting the economy

with more agents with the technology than in the steady state (recall that m̃ is the steady

state density of agents without the technology). Second, the shock (deviation from the steady

state) is not a small one, hence the local perturbation might lose accuracy in principle.

The figure contains four lines. The two top lines display the computation of the path of

N based on discretization (label as Global) with the one based on the perturbation (label as

local). The two bottom lines display the computation of the path of x̄ based on discretization

(label as Global) with the one based on the perturbation (label as local). It is apparent that

both methods gives very similar answer, i.e that the linearization is accurate for initial con-

ditions far away from the steady states. The other feature apparent with these computations

is that the steady state is stable even starting far away from the steady state.
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Figure A1: Global vs Local Solutions

B Proofs

Proof. (of Proposition 1).

As a preliminary step we establish a correspondence and inequality between sample paths

of a Brownian Motion with reflected barriers 0 and U but with different initial conditions.

In particular, we can write x(t, α) for each sample path α:

x(t, α) = x(0, α) + σ [W (ω, t)−W (ω, 0)] + u(t, α)− d(t, α)

where ω are the sample path of the standard Brownian Motion denoted by W , where u(·, α)

and d(·, α) are increasing processes in each sample path, where u(s, α) only increases when

x(s, α) = 0, and where d(s, α) only increases when x(s, α) = U for s ∈ [0, t]. Consider any

sample path α for which x(0, α) = x1 with a corresponding sample path ω for the standard

Brownian Motion W . Then there is a corresponding sample path α′ where x(0, α′) = x2,

and with ω = ω′ for W , i.e. the two sample paths correspond to the same path of W . Thus,

these two sample paths occur with the same probability. From the last observation it follows

that we can represent the sample path α by the pair ω, x(0), where x(0) = x(0, α). Finally,

if x1 < x2, comparing these two sample paths we obtain x(t, α′) ≥ x(t, α), i.e. we can pair

the sample paths that start with different initial conditions and that occur with the same

probability, and obtain that the one that starts at a higher value is (weakly) higher for all

future times, and strictly higher for t small enough.

Now we turn to the main result. We proceed by contradiction, assuming that while it is
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optimal to adopt at (x1, t), it is not optimal to adopt for (x2, t) with x2 > x1. Without loss

of generality we assume that t = 0. Our hypothesis imply that for all stopping times with

τ1 > 0 it is not convenient to wait if x(0) = x1, and thus

−c+ E
[∫ ∞

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
≥ (66)

E
[
−ce−ρτ1 +

∫ ∞
τ1

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
.

or equivalently that

−c+ E
[∫ τ1

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
+ cE

[
e−ρτ1 |x(0) = x1

]
≥ 0 .

Likewise, for x(0) = x2 there exists a τ ∗ > 0 for which it is optimal to wait:

−c+ E
[∫ τ∗

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x2

]
+ cE

[
e−ρτ

∗ |x(0) = x2

]
≤ 0 .

We use the characterization for the sample paths described above, to construct a stopping

time that only depends on the path ω as: τ1(ω, x1) = τ ∗(ω, x2) for all ω. Using this equality,

we immediately obtain E [e−ρτ1 |x(0) = x1] = E
[
e−ρτ

∗ |x(0) = x2

]
. Furthermore, using our

characterization above for each path ω, we obtain:

E
[∫ τ1

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
< E

[∫ τ1

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x2

]
= E

[∫ τ∗

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x2

]
Using this strict inequality we get a contradiction with equation (66), and hence we establish

the desired result. �

Proof. (of Lemma 1).

The proof is readily obtained by using the definitions â (z, t) ≡ θ0a (zU, t) and v̂ (z, t) ≡
θ0v (zU, t). It is straightforward to verify that these functions satisfy the partial differential

equations for â(z) and v̂(z) for z ∈ (0, 1), including smooth pasting, value matching and

boundary conditions. �

Proof. (of Proposition 2).

For this proof we set up the problem as a stopping time problem. We first prove a useful

result in Lemma 4, showing that τ(N ′) ≤ τ(N) if N ′ ≥ N . To convert the result on the
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monotonicity of the stopping times, into a result of the threshold x̄, we note that the optimal

decision rule is of the threshold type, as established in Proposition 1. We also show that

exactly the same argument holds for the monotonicity with respect to θ. These results allow

us to apply Topkis’s (1978) theorem, which immediately establishes the proposition’s result.

Next we set up the problem in terms of stopping times, and then state and prove Lemma 4.

�

Decision problem as stopping times. Fix x0 ∈ [0, U ] and t0 ∈ [0, T ]. Let N ∈
C([t0, T ]) = {N : [t0, T ] → [0, 1]} and τ denote a stopping time. Let Ω denote the sam-

ple paths that start at time t0 with x(t0) = x0. A set Lt0,x0 = {τ : Ω → [t0, T ]} is a lattice

since min{τ1, τ2} and max{τ1, τ2} are stopping times.

Let ω ∈ Ω be a sample path that corresponds to a continuation of (x0, t0) with measure

µ(·|x0, t0). We denote by x(·, ω) : [t0, T ] → [0, U ] the sample path of the process for x that

starts at x(t) = x0. Then the objective function can be written as

F (τ,N ;x0, t0) =

∫
f(τ(ω), x(·, ω), N)µ(dω|x0, t0)

where

f(τ, x(·, ω), N ;x0, t0) =

[∫ T

τ

e−ρtx(t, ω) [θ0 + θnN(t)] dt− e−ρτc
]

where F : Lt0,x0 × C([t0, T ])→ R. We have the following important lemma:

Lemma 4. Let θ ≡ (θ0, θn) ≥ 0 and fix (x0, t0). We establish three properties of

F (τ,N ;x0, t0): (i) it is submodular in τ ; (ii) it has decreasing differences in (τ,N); (iii) it

has decreasing differences in (τ, θ).

Proof. (of Lemma 4). Result (i): Submodularity in τ follows because F is additive across

sample paths for all τ and τ ′. We omit x0, t0 to simplify the notation. Fixing N we want to

show:

F (max{τ, τ ′}, N)− F (τ,N) ≤ F (τ ′, N)− F (min{τ, τ ′}, N)

which follows because for each sample path ω we have:

f(max{τ, τ ′}, N)− f(τ,N) ≤ f(τ ′, N)− f(min{τ, τ ′}, N).

which holds since: 0 = f(max{τ, τ ′}, N)− f(τ,N)− f(τ ′, N) + f(min{τ, τ ′}, N).
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Result (ii): We prove the submodularity of F , namely that given τ ′ > τ and N ′ > N we

have

F (τ ′, N ′)− F (τ,N ′) ≤ F (τ ′, N)− F (τ,N)

To this end consider τ ′(ω) ≥ τ(ω) and compute:

F (τ ′, N)− F (τ,N) =

∫
(f(τ ′, N)− f(τ,N))µ(dω)

and for each ω

f(τ ′, N, ω)− f(τ,N, ω) =

∫ T

τ ′
e−ρt [θ0 + θnN(t)]x(t, ω)dt− e−ρτ ′c

−
(∫ T

τ

e−ρt [θ0 + θnN(t)]x(t, ω)dt− e−ρτc
)

= −
∫ τ ′

τ

e−ρt [θ0 + θnN(t)]x(t, ω)dt− e−ρτ ′c+ e−ρτc.

Thus, for all N ′(t) ≥ N(t) and all t

(f(τ ′, N ′, ω)− f(τ,N ′, ω))− (f(τ ′, N, ω)− f(τ,N, ω))

= −
∫ τ ′

τ

e−ρt [θ0 + θnN
′(t)]x(t, ω)dt+

∫ τ ′

τ

e−ρt [θ0 + θnN(t)]x(t, ω)dt

= −θn
∫ τ ′

τ

e−ρt [N ′(t)−N(t)]x(t, ω)dt ≤ 0

Thus

F (τ ′, N ′)−F (τ,N ′)−(F (τ ′, N)−F (τ,N)) = −θn
∫ (∫ τ ′(ω)

τ(ω)

e−ρt [N ′(t)−N(t)]x(t, ω)dt

)
µ(dω) ≤ 0

Old expression with typos

F (τ ′, N)− F (τ,N) = −θn
∫ (∫ τ ′(ω)

τ(ω)

e−ρt [N ′(t)−N(t)]x(t, ω)dt

)
µ(dω) ≤ 0

Result (iii): Following the same steps followed in (ii) assuming θ′ > θ gives:

F (τ ′, θ′)−F (τ, θ′)−(F (τ ′, θ)−F (τ, θ)) = −
∫ (∫ τ ′(ω)

τ(ω)

e−ρt [(θ′0 − θ0) + (θ′n − θn)N(t)]x(t, ω)dt

)
µ(dω) ≤ 0
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�

Proof. (of Proposition 3) The fraction of agents that have not adopted at time t can be

written as

M(t) ≡
∫ x̄(t)

0

m(z, t)dz =

∫ U

0

m0(x)P (x, 0, t)dx+

∫ U

0

ν

U

∫ t

0

P (x, s, t)ds dx

where

P (x, s, t) = Pr [X(r) ≤ x̄(r), for all r ∈ [s, t] | X(s) = x] e−ν(t−s) (67)

where X(·) is a Brownian motion with reflecting barriers in [0, U ]. Thus P (x, s, t) is the

fraction of agents that at time s have X(s) = x, survive until t, and also have had X(r)

below the threshold x̄(r) at all times r ∈ [s, t]. The first term in equation (67) is the fraction

of those that have not adopted at in the initial distribution, and still have not adopted, and

survive, at time t. The second term keeps tract of those cohort that have died at time s, and

replaced by new agents, and themselves survive and not adopt up to time t.

Consider two paths x̄′ ≥ x̄ and the corresponding probabilities and measure of non-

adopters P ′(x, s, t) and M ′(t) computed with x̄′, and P (x, s, t) and M(t) computed with x̄.

The set of events {X(r) ≤ x̄(r), for all r ∈ [s, t]} is included in the set of events {X(r) ≤
x̄′(r), for all r ∈ [s, t]}, since x̄(r) ≤ x̄′(r), and hence P ′(x, s, t) ≥ P (x, s, t). Thus M ′(t) ≥
M(t). Since N ′(t) = 1 − M ′(t) and N(t) = 1 − M(t), obtaining the desired result that

N ′(t) ≤ N(t).

The monotonicity with respect to m0 follows immediately, since
∫ U

0
m0(x)P (x, 0, t)dx is

increasing in m0 because P (x, 0, t) is non-negative.

�

Proof. (of Theorem 1) The proof uses Tarski’s fixed point theorem for the function F as

defined in equation (6). We restrict attention to the discrete time, discrete state version of

the model so that we can we apply Tarski in a complete lattice.

We note that {N : {0,∆t, . . . , T} → [0, 1]} = [0, 1]J where J is the integer that defines

∆t. This set is a complete lattice. This function is monotone by virtue of Proposition 2 and

Proposition 3. Then, Tarski’s fixed point theorem implies that the set of fixed points is a

lattice.

The comparative static result follows from the properties of the mapping X and N es-

tablished in Proposition 2 and Proposition 3. �

Proof. (of Proposition 4) If an equilibrium without adoption exists, then N(t) = N(0)e−νt,
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and hence if someone will adopt, it will adopt at time t = 0. Moreover, if someone will adopt

it will be the one with x = U . Thus, we compute the value of N such that:

c = E
[∫ ∞

0

e−ρtx(t) [θ0 + θnN(t)] dt|x(0) = U

]
= θ0E

[∫ ∞
0

x(t)e−ρtdt|x(0) = U

]
+ θnN(0)E

[∫ ∞
0

x(t)e−(ρ+ν)tdt|x(0) = U

]
We note that ã(x; q) = E

[∫∞
0
x(t)e−qtdt|x(0) = x

]
solves the o.d.e. qã(x) = 1 + ã′′(x) with

boundary conditions ã′(0) = ã′(U) = 0. The solution of this o.d.e. is:

ã(x; q) =
1

q

[
x+ Ā1e

ηx + Ā2e
−ηx]

Ā1 ≡
1

η

(
1− e−ηU

)
(e−ηU − eηU)

, Ā2 ≡
1

η

(
1− eηU

)
(e−ηU − eηU)

and η ≡
√

2q/σ2

Evaluating ã(x; q) at x = U we get:

ã(U ; q) =
1

q

[
U − coth(ηU)

η
+

csch(ηU)

η

]
Using this in the expression for N we obtain the desired expression. �

Proof. (of Proposition 5) First note that x = U is a (non-interior) steady state if, in case

nobody adopts (N = 0), then those with x = U find it optimal not to adopt, which is

equivalent to θ0U < ρc.

An interior steady state is the zero of q(x) ≡ (θ0 + θn)x − (ρc + x2θn/U) which belongs

to (0, U). Note that q(0) = −ρc < 0. In case (i), we have q(U) = θ0U − ρc > 0. Thus there

is only one interior solution belonging to (0, U). In case (ii), we have q(U) = θ0U − ρc < 0.

In this case, since q(x) is quadratic it can have zero, one, or two solutions. Note that fixing

an x we have three properties: (1) ∂q(x)/∂θn = x (1− x/U) > 0 if x ∈ (0, U), (2) θn = 0

then, q(x) = xθ0 − ρc = U (θ0x/U − ρc/U) < U (θ0 − ρc/U) < 0, where the last inequality

holds in case (ii), and (3) that for large enough θn then q(x) = θ0x− ρc+ xθn(1− x/U) > 0

for x ∈ (0, U). Hence, we can find a θ∗n such that for θn ∈ [0, θ∗n) there is no interior root, for

θn = θ∗n there is exactly one interior root, and for θn > θ∗n there are two interior roots. �

Proof. (of Lemma 2) The monotonicity of Xss with respect to the parameters θ̄ss ≡ (θ0 +

θnN)/ρ is established in Appendix C.1. It is obtained by solving the o.d.e. for the value

functions, and using the boundary conditions. It is clear that the optimal threshold, fixing η,

solves an implicit equation ψ(γx̄ss) = ηc/θ̄ss, where the function ψ is derived in Appendix C.1.
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This function is strictly increasing, and satisfies ψ(0) = 0. Thus Xss is strictly decreasing in

θ̄ss and strictly increasing in c. A first order approximation of ψ gives the expansion used in

the lemma. �

Proof. (of Lemma 3) That Nss is decreasing in x̄ follows immediately since tanh(z) is, for

positive z, concave and has tanh′(0) = 1. Thus Nss(x̄) = 1
U

(−1 + tanh(x̄γ)) < 0 if x̄ > 0.

That Nss is strictly decreasing in γ follows from differentiating tanh(x̄γ)/γ with re-

spect to γ. This derivative is proportional to −(tanh(x̄γ) − x̄γsech2(x̄γ)) = −(tanh(x̄γ) −
x̄γ tanh′(x̄γ)) < 0, where we used that tanh(z) is strictly concave for z > 0. �

Proof. (of Proposition 6). In the deterministic case, i.e. when σ = 0, there are at most two

interior steady states (the case we focus on). To simplify the notation let N o(x̄ss) ≡ X−1
ss (x̄ss)

and Na(x̄ss) ≡ Nss(x̄ss). In each of the steady states we write

Na
(
x̄j(c)

)
= N o

(
x̄j(c), c

)
(68)

where j = {H,L} (for high and low adoption, with x̄H < x̄L).

The functions Na and N o and their derivatives are continuous functions of x̄ss, σ, c, θ0. In

each of the steady states the functions Na and N o have strictly different slopes. Some analysis

shows that the functions Na, N o intersect twice, and the derivative of Na −N o with respect

to x̄ss is positive when the curves intersect at x̄Hss and negative when the curves intersect at

the x̄Lss. We summarize this by writing Na
x̄ (x̄Hss)−N o

x̄(x̄Hss) > 0 while the derivative is negative

at x̄Lss.

Note that c does not enter in Na. Differentiating equation (68) with respect to c:

[Na
x̄ (x̄(c))−N o

x̄ (x̄(c), c)]
∂x̄(c)

∂c
= N o

c (x̄(c), c) > 0

and again using the properties of each steady state:

∂x̄Hss
∂c

> 0 >
∂x̄Lss
∂c

Following exactly the same steps we get:

∂x̄Lss
∂θ0

> 0 >
∂x̄Hss
∂θ0

�
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C Solution of the Steady State Problem

C.1 Solution for ã(x) and ṽ(x)

The solution to ã is of the form:

ã(x) = x
θ0 + θnNss

ρ
+ A1e

ηx + A2e
−ηx

for η =
√

2ρ/σ2, and

0 =
θ0 + θnNss

ρ
+ η(A1 − A2) =

θ0 + θnNss

ρ
+ η(A1e

ηU − A2e
−ηU)

Thus, given θ0 + θnNss, the constants (A1, A2) are the solution of two linear equations.

Moreover, the values of A1, A2 are proportional to θ̄ss given by

θ̄ss ≡
θ0 + θnNss

ρ
= η(A2 − A1) = η(A2e

−ηU − A1e
ηU)

Let Āi ≡ Ai/θ̄ss, we can write:

1 = η(Ā2 − Ā1) = η(Ā2e
−ηU − Ā1e

ηU)

which has solution:

Ā1 =
1

η

(
1− e−ηU

)
(e−ηU − eηU)

, Ā2 =
1

η

(
1− eηU

)
(e−ηU − eηU)

The solution for ṽ for x ∈ [0, x̄ss] is of the form

ṽ(x) = B1e
ηx +B2e

−ηx

Given the solution for ã, then B1, B2, x̄ss solve:

0 = η(B1 −B2)

ãx(x̄ss) = η(B1e
ηx̄ss −B2e

−ηx̄ss)

ã(x̄ss)− c = B1e
ηx̄ss +B2e

−ηx̄ss
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Thus, using the first equation B1 = B2 = B and taking the ratio of these equations:

ã(x̄ss)− c
ãx(x̄ss)

=
1

η

eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)

Replacing the expressions for ã(x̄ss) and ã′(x̄ss), we obtain:

x̄ss + Ā1e
ηx̄ss + Ā2e

−ηx̄ss − c/θ̄ss
1 + η

(
Ā1eηx̄ss − Ā2e−ηx̄ss

) =
1

η

eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)

Note that this is one equation for x̄ss as a function of θ̄ss (recall that Ā1, Ā2 are known

constants). The last expression can be written as

ηx̄ss + ηĀ1e
ηx̄ss + ηĀ2e

−ηx̄ss − eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)
(
1 + η

(
Ā1e

ηx̄ss − Ā2e
−ηx̄ss

))
=

η

θ̄ss
c

which gives equation (19) in the main text.

Letting y ≡ ηx̄ss and defining ψ(y) we can write

ψ(y) ≡ y + η
(
Ā1e

y + Ā2e
−y)− ey + e−y

(ey − e−y)
(
1 + η

(
Ā1e

y − Ā2e
−y))

=
η

θ̄ss
c

We can approximate the left hand side around x̄ss = 0, which corresponds to c = 0. Using

that ηĀ2 = ηĀ1 + 1, we have the following properties.

1. ψ(0) = 0, ψ(y) > 0 if y > 0

2. ψ′(y) = e2y+1
(ey+1)2 so ψ′(0) = 1

2
, ψ′(∞) = 1, and ψ′′(y) > 0,

3. ψ(y) = y
2

+ y3

24
+ o(y4) and limy→∞

ψ(y)−y
y

= 0

Now we use ψ to solve for x̄ss = χ(η, c/θ̄ss) i.e. ηc
θ̄ss

= ψ(ηχ(η, c/θ̄ss)). x̄ss is the unique

solution of ψ(ηx̄ss)
η

= c
θ̄ss

, which always exists. For fixed 0 < η <∞ and small c using the first

order approximation:

y = ηx̄ss = 2
ηc

θ̄ss
or x̄ss = 2

c

θ̄ss
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since η =
√

2ρ
σ

the option value for a fixed θ̄ is given by:

lim
c→0

χ(η, c/θ̄ss)

χ(∞, c/θ̄ss)
= 2

For fixed 0 < η <∞ and small c, using the third order approximation y3 +12y = κ̂ ≡ 24ηc
θ̄ss

or:

x̄ss =
1

η

(
1

2
κ̂+

√
1

4
κ̂2 +

123

27

)1/3

+
1

η

(
1

2
κ̂−

√
1

4
κ̂2 +

123

27

)1/3

=
1

η

(
1

2

)1/3 [(
κ̂+
√
κ̂2 + 16

)1/3

+
(
κ̂−
√
κ̂2 + 16

)1/3
]

For the case when σ is small (i.e. η is large), let S(y) ≡ y − ψ(y) + 1 and recall that

limy→∞ S(y) = 0. Then, using the definitions of y and ψ(y), this implies

lim
σ→0

√
2ρ

σ

(
χ

(
∞, c

θ̄ss

)
− c

θ̄ss
− σ√

2ρ

)
= 0

Thus, for σ small we can use:

x̄ss =
c

θ̄ss
+

σ√
2ρ

+ o(σ)

Alternatively, note that x̄ss − σ√
2ρ

is the derivative of ψ(ηx̄ss)
η

with respect to σ evaluated at

σ = 0.

C.2 Solution for m̃(x)

We can write the solution of the KFE as the sum the two homogeneous and the particular

solution mp, given x̄ss, i.e.

m̃(x) = C1e
γx + C2e

−γx +mp(x)

where γ =
√

2ν/σ2. The solution is

m̃(x) =
1

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
for x ∈ [0, x̄ss]
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Finally, we want to compute:

1−Nss =

∫ x̄ss

0

m̃(x)dx =

∫ x̄ss

0

1

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
dx

This gives another equation for x̄ss as function of θ̄.

D Perturbation of the equilibrium conditions

We study the evolution of the MFG where the initial condition is given by a small perturbation

ε of the steady state distribution:

m0(x) = m̃(x) + ε ω(x) . (69)

We consider an equilibrium with {x̄(t, ε), N(t, ε), D(x, t, ε),m(x, t, ε)}. We will linearize this

equilibrium with respect to ε and evaluate it at ε = 0. For all t ∈ [0, T ], we denote these

derivatives as follows:

p(x, t) ≡ ∂

∂ε
m(x, t, ε)

∣∣∣∣
ε=0

d(x, t) ≡ ∂

∂ε
D(x, t, ε)

∣∣∣∣
ε=0

n(t) ≡ ∂

∂ε
N(t, ε)

∣∣∣∣
ε=0

ȳ(t) ≡ ∂

∂ε
x̄(t, ε)

∣∣∣∣
ε=0

D.1 Linearization and Solution of the KB Equation

We differentiate D(x, t, ε) with respect to ε at each (x, t) to obtain d(x, t) which solves the

following p.d.e

ρd(x, t) = xθnn(t) +
σ2

2
dxx(x, t) + dt(x, t) (70)
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for x ∈ [0, x̄ss] and t ∈ [0, T ]. The boundary conditions are obtained by differentiating the

boundaries in equation (10) with respect to ε. This gives:

d(x̄ss, t) = 0

D̃xx(x̄ss)ȳ(t) + dx(x̄ss, t) = 0 (71)

dx(0, t) = 0

for t ∈ [0, T ] and d(x, T ) = 0 for x ∈ [0, x̄ss]. Note that equation (71) defines ȳ(t) and that

D̃xx(x̄ss) = ãxx(x̄ss)− ṽxx(x̄ss) < 0.

Taking the derivative of the solution for d(x, t) in equation (70) with respect to x and

combining it with equation (71) we find

ȳ(t) =
θn

D̃xx(x̄ss)

∫ T

t

G(τ − t)n(τ)dτ (72)

where G(s) ≡
∑∞

j=0 cje
−ψjs ≥ 0 for s ≥ 0, ψj ≡ ρ + σ2

2

(
π( 1

2
+j)

x̄ss

)2

, and cj ≡ 2
(

1− cos(πj)

π(j+ 1
2

)

)
.

An important property of this is that, since G(s) ≥ 0 and D̃xx(x̄ss) < 0, an increase in future

adoption of the technology (i.e. future values of n(τ) > 0 for τ > t), then the threshold

for adoption is smaller (i.e. more people will adopt today). Next we provide details of the

solution of the p.d.e. for d. We have

Lemma 5. The solution for the KBE equation for d, satisfying the p.d.e. in equation (70),

and the boundary conditions in equation (71), is given by

d(x, t) =
∞∑
j=0

ϕj(x)d̂j(t) for x ∈ [0, x̄ss] and t ∈ [0, T ]

where for all j = 1, 2, ... we have:

ϕj(x) ≡ sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss]

d̂j(t) ≡
∫ T

t

e−ψj(τ−t)ẑj(τ)dτ for t ∈ [0, T ]

ẑj(t) ≡ θnn(t)
〈ϕj, x〉
〈ϕj, ϕj〉

= θnn(t)
2x̄ss(

1
2

+ j
)
π

(
1− cos(πj)

π(j + 1
2
)

)
for t ∈ [0, T ]

where ψj ≡ ρ+
σ2

2

(
π(1

2
+ j)

x̄ss

)2

and d̂j(T ) = 0

where 〈ϕj, h〉 ≡
∫ x̄ss

0
h(x)ϕj(x)dx. The proof can be done by verifying that the equation
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holds at the boundaries, and that for t > 0 the p.d.e in equation (70) holds in the interior

since ∂xxϕj(x) = −
(
π( 1

2
+j)

x̄ss

)2

ϕj(x), and ∂td̂j(t) = ψj d̂j(t)−ẑj(t) for t ∈ [0, T ] and j = 1, 2, ...,

and since the {ϕj(x)} form an orthogonal basis for functions. Note finally that the boundary

holds at t = 0 for x ∈ [0, x̄ss], and that the derivative of the solution for d, used to solve for

ȳ in equation (71), is

dx(x̄ss, t) = −θn
∫ T

t

∞∑
j=0

cje
−ψj(s−t)n(s)ds where cj ≡ 2

(
1− cos(πj)

π(j + 1
2
)

)
.

D.2 Linearization and Solution of the KF Equation

We differentiate the KFE for m(x, t, ε) with respect to ε at each (x, t) to obtain:

pt(x, t) =
σ2

2
pxx(x, t)− νp(x, t) (73)

for x ∈ [0, x̄ss] and t ∈ [0, T ].

Differentiating the boundary conditions m(x̄(t, ε), t, ε) = 0 and mx(0, t, ε) = 0 with respect

to ε we get

m̃x(x̄ss)ȳ(t) + p(x̄ss, t) = 0 (74)

px(0, t) = 0

The initial condition comes from differentiating m0(x) with respect to ε

p(0, x) = ω(x) (75)

The solution for p satisfies the p.d.e given in equation (73), its boundary conditions in

equation (74), and the initial condition in equation (75). We have

Lemma 6. The solution for the KFE equation for p, satisfying the p.d.e given in equa-

tion (73), the boundary conditions in equation (74), and the initial condition in equation (75),

is given by

p(x, t) =
∞∑
j=0

ϕj(x)p̂j(t) + r(t) for x ∈ [0, x̄ss] and t ∈ [0, T ]

r(t) ≡ − m̃x(x̄ss) ȳ(t) for t ∈ [0, T ]
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where for all j = 1, 2, ... we have:

p̂j(t) ≡ p̂j(0)e−µjt +

∫ t

0

e−µj(t−τ)q̂j(τ)dτ for t ∈ [0, T ]

q̂j(t) ≡ −(r′(t) + νr(t))
〈1, ϕj〉
〈ϕj, ϕj〉

for t ∈ [0, T ]

ϕj(x) ≡ sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss]

where p̂j(0) =
〈ϕj, ω − r(0)〉
〈ϕj, ϕj〉

and µj ≡ ν +
σ2

2

(
π(1

2
+ j)

x̄ss

)2

where 〈ϕj, h〉 ≡
∫ x̄ss

0
h(x)ϕj(x)dx. The proof can be done by verifying that the equations

hold at the boundaries, that for t > 0 the p.d.e holds in the interior since

p̂′j(t) = −µj p̂j(t) + q̂j(t) for t ∈ [0, T ] and j = 1, 2, ...

and since {ϕj(x)} form an orthogonal bases for functions, and finally that the boundary

holds at t = 0 for x ∈ [0, x̄ss], and it holds at x = x̄ss for every 0 < t < T

Given p(x, t) we can compute n(t) as:

n(t) = −
∫ x̄ss

0

p(x, t)dx

= n0(t) +
m̃x(x̄ss)σ

2

x̄ss

∫ t

0

J(t− τ)ȳ(τ)dτ (76)

where J(s) =
∑∞

j=0 e
−µjs with µj = ν + 1

2
σ2
(
π( 1

2
+j)

x̄ss

)2

and n0(t) ≡ −
∑∞

j=0
x̄ss

π( 1
2

+j)

〈ϕj ,ω〉
〈ϕj ,ϕj〉e

−µjt.

D.3 Equilibrium in the Perturbed MFG

Recall that from equation (72), ȳ(t) is equal to

ȳ(t) =
θn

D̃xx(x̄ss)

∫ T

t

G(τ − t)n(τ)dτ

where G(s) ≡
∑∞

j=0 cje
−ψjs for s ≥ 0. From equation (76) we also know that n(t) is
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n(t) = n0(t) +
m̃x(x̄ss)σ

2

x̄ss

∫ t

0

J(t− τ)ȳ(τ)dτ

where J(s) =
∑∞

j=0 e
−µjs and n0(t) ≡ −

∑∞
j=0

x̄ss
π( 1

2
+j)

〈ϕj ,ε〉
〈ϕj ,ϕj〉e

−µjt. Combining equation (72)

and equation (76) we get

n(t) = n0(t) + Θ(x̄ss)

∫ t

0

∫ T

τ

J(t− τ)Ḡ(s− τ)n(s)dsdτ

= n0(t) + Θ(x̄ss)

∫ T

0

∫ min{s,t}

0

J(t− τ)G(s− τ)n(s)dsdτ

= n0(t) + Θ(x̄ss)

∫ T

0

K(t, s)n(s)ds

where K(t, s) =
∫ min{s,t}

0
J(t− τ)Ḡ(s− τ)dτ and Θ(x̄ss) ≡ m̃x(x̄ss)σ2θn

x̄ssD̃xx(x̄ss)
. Using the definitions

of J(s) and G(s) we find

K(t, s) =

∫ min{s,t}

0

J(t− τ)G(s− τ)dτ

=

∫ min{s,t}

0

(
∞∑
j=0

e−µj(t−τ)

)(
∞∑
j=0

cje
−ψj(s−τ)

)
dτ

=
∞∑
j=0

∞∑
j=0

cje
−µit−ψjs

∫ min{s,t}

0

e(µi+ψj)τdτ

=
∞∑
i=0

∞∑
j=0

cje
−µit−ψjs

[
e(µi+ψj) min{t,s} − 1

µi + ψj

]
.

Note that K(t, t) =
∑∞

i=0

∑∞
j=0 cj

[
1−e−(µi+ψj)t

µi+ψj

]
.

To calculate the Lipschitz bound LipK ≡ supt∈[0,T ]

∫ T
0
|K(t, s)|ds, let

κij(t) ≡
∫ T

0

e−µit−ψjs(e(µi+ψj) min{t,s} − 1)

so that ∫ T

0

K(t, s)ds =
∞∑
i=0

∞∑
j=0

cj
κij(t)

µi + ψj
.
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Computing the integrals in κij(t) we get

κij(t) =

∫ t

0

e−µit−µisds+

∫ T

t

e−ψjt−ψjsds−
∫ T

0

e−µit−ψjsds

=
e−µit(eµit − 1)

µi
+
eψjt(e−ψjT − e−ψjt)

−ψj
− e−µit(e−ψjT − 1)

−ψj

=

(
ψj + µi
ψjµj

)
(1− e−µit) + e−ψjT (e−µit − eψjt)

and as T →∞

κij(t) =

(
ψj + µi
ψjµj

)
(1− e−µit)

≤ ψj + µi
ψjµi

.

Using that
∫ T

0
|K(t, s)|ds ≤

∫∞
0
|K(t, s)|ds we get

∫ T

0

K(t, s)ds =
∞∑
i=0

∞∑
j=0

cj
κij(t)

µi + ψj

≤
∞∑
i=0

∞∑
j=0

cj
1

µiψj

=

(
∞∑
i=0

1

µi

)(
∞∑
j=0

cj
ψj

)
.

We can use the definitions of µj, ψj, and cj to further simplify this expression. First note

that

∞∑
i=0

1

µi
=
∞∑
i=0

1

ν + 1
2
σ2
(
π( 1

2
+j)

x̄ss

)2

≤ 2x̄2
ss

σ2

∞∑
i=0

1(
π(1

2
+ j)

)2

=
x̄2
ss

σ2
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where we obtain the bound for ν = 0. Notice also that

∞∑
j=0

cj
ψj

=
∞∑
j=0

2
(

1− cos(πj)

π(j+ 1
2

)

)
ρ+ 1

2
σ2
(
π( 1

2
+j)

x̄ss

)2

≤ 4x̄2
ss

σ2

∞∑
j=0

(
1− cos(πj)

π(j+ 1
2

)

)
(
π(1

2
+ j)

)2

=
4x̄2

ss

σ2

∞∑
j=0

(
1(

π(1
2

+ j)
)2 −

(−1)j(
π(1

2
+ j)

)3

)

=
4x̄2

ss

σ2

∞∑
j=0

(
1

2
− 1

4

)
=
x̄2
ss

σ2

where the bound is obtained for ρ = 0. Putting these together we find the Lipschitz bound

LipK ≡ sup
t∈[0,T ]

∫ T

0

K(t, s)ds ≤

(
∞∑
i=0

1

µi

)(
∞∑
j=0

cj
ψj

)

=

(
x̄2
ss

σ2

)2

.

A sufficient condition for the existence and uniqueness of the equilibrium IRF, i.e. of the

uniqueness and existence of a solution to equation (27) is that |Θ(x̄ss)|LipK < 1. To establish

a bound for Θ(x̄ss), in terms of the fundamental model parameters, that ensures existence

and uniqueness, we use the definition of Θ(x̄ss) and the Lipschitz bound as follows:

Θ(x̄ss)
( x̄ss
σ2

)2

=
m̃x(x̄ss)σ

2θn

x̄ssD̃xx(x̄ss)

(
x̄2
ss

σ2

)2

=
m̃x(x̄ss)θnx̄

3
ss

D̃xx(x̄ss)σ2

=
θn(γx̄ss)

2

2U

tanh(γx̄ss)(
θ0 + θn

(
1− γx̄ss

γU
+ tanh(γx̄ss)

γU

))
γx̄ss − ρcγ

where we obtained Dxx(x̄ss) evaluating equation (9) at x̄ss and using equation (20), and we

calculate m̃x(x̄ss) from m̃(x) = 1
U

(
1− cosh(γx)

cosh(γx̄ss)

)
.
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E A “Pure” Learning Model

In this section, we develop a model with random diffusion of the technology across agents.

Agents can be either uninformed about the technology, or informed about it. If they are

informed, they can decide to pay a cost c and adopt it. Newborn agents start as uninformed,

and become informed by randomly matching with informed agents. Once an agent adopts

the technology her flow benefit depends on the idiosyncratic value of the random variable x,

but not on the size of the network, i.e. θn = 0.

The main conclusions are that the pure learning model differs from the model with strate-

gic complementarity in that:

1. it has a unique equilibrium, and a unique stable steady state,

2. it has a logistic S shape adoption profile, provided the initial share of uninformed is

small enough,

3. the use of the technology for those that adopt depends only on the cohort, and not the

size of the network,

4. the equilibrium is constrained efficient: the optimal subsidy to use the technology is

zero.

Learning set up. We follow the canonical notation for an “SIR” model and assume that the

population, normalized to have measure 1, is split between the uninformed, whose measure

we denote by S(t), and the informed, which have measure I(t), so that I(t)+S(t) = 1. Those

that are informed can be split in two groups, those that have adopted the technology, with

measure N(t), and those informed that have not adopted M(t), so that I(t) = M(t) +N(t).

The main assumption about learning about the technology is that agents do not need to

use the technology to learn about it. In particular, agents that know about the technology

will randomly meet agents that don’t and transmit the information in such way. Recall that

among the I(t) informed agents, only a N(t) have adopted, and M(t) are informed but have

decided not to adopt.

Optimal Adoption. Now we turn to the decision of agents. The uninformed agents have

no decision to make. The decision problem of those that are informed is similar to the steady

state problem in our model with strategic complementarities.

The value of an agent that already has adopted the technology is

ρa(x) = θ0x+
σ2

2
axx(x) for x ∈ [0, U ]
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with boundaries ax(0) = ax(U) = 0 The value function for an agent that is informed is:

ρv(x) = max

{
σ2

2
vxx(x) , ρ(a(x)− c)

}
with time invariant threshold x̄ < U solving, and boundary at zero:

vx(x̄) = ax(x̄) and v(x̄) = a(x̄)− c and vx(0) = 0

The solution of v and a are identical to the steady state solutions of the baseline model

ṽ and ã where we set θn = 0. Likewise the solution for x̄ is the same as the value x̄ss for the

model with θn = 0.

Evolution of distributions. Now we turn to the description of the distribution of agents

across states. We let s(x, t) the density of those uninformed at t with x, and m(x, t) the

density of those informed at t with x and that have not adopted yet. First we characterize

g which satisfies:

st(x, t) =
σ2

2
sxx(x, t)− (ν + β(S(t))) s(x, t) + ν

1

U
all t ≥ 0 and x ∈ [0, U ]

with boundary conditions given by reflections at the boundary, i.e. 0 = sx(0, t) = sx(U, t) all

t ≥ 0 and initial condition independent of x:

s(x, 0) = s0 all x ∈ [0, U ]

In this case S(t) is the total measure of uninformed agents at time t, and β(·) is a function

that gives the probability per uninformed of becoming informed:

S(t) =

∫ U

0

s(x, t)dx

We assume that β(·) is given by

β(S) = β0 (1− S) = β0 I for some constant β0 > ν > 0

The interpretation is that each agent has β0 meeting per unit of time, and that a fraction

1− S are with those informed of the technology.
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We will return to solve for S and I below. Now we turn to the law of motion for m is:

mt(x, t) =
σ2

2
mxx(x, t) + β(S(t))s(x, t)− νm(x, t) all t ≥ 0 and x ∈ [0, x̄]

m(x, t) = 0 all t ≥ 0 and x ∈ [x̄, U ]

Continuity of m implies that m(x̄, t) = 0 all t ≥ 0. The reflecting barrier of x at zero implies

0 = mx(0, t) for all t ≥ 0.

Comparing with the baseline model with constant x̄, the evolution of the density m has

one main difference. Instead of having the constant inflow ν/U , it has a time varying, and

smaller, inflow β(S(t))s(x, t). This smaller inflow, everything else the same, can substantially

retard the adoption.

We define the total number that are uninformed as:

M(t) ≡
∫ x̄

0

m(x, t)dx ≤ I(t) = 1− S(t)

The initial condition that the density of those that have not adopted is smaller than the

density of those that are informed, i.e.: 0 ≤ M(0) ≤ I(0) all x ∈ [0, U ]. Note that by

integrating across x and using the boundary conditions:

Mt(t) =

∫ x̄

0

mt(x, t)dx =
σ2

2
mx(x̄, t) + β(S(t))S(t)

x̄

U
− νM(t) all t ≥ 0 and x ∈ [0, x̄]

We are interested in: N(t) = 1− S(t)−M(t), which using the previous equations gives:

Nt(t) = −σ
2

2
mx(x̄, t)− νN(t) + β(S(t))S(t)

(
1− x̄

U

)
for all t ≥ 0

with initial condition N(0) =
(
1− x̄

U

)
I(0).

Note that since m(x, t) > 0 for x < x̄ and m(x̄, t) = 0, then mx(x̄, t) < 0. The next

proposition rewrite this expression which it is useful to interpret the determinants of the

dynamics of N(t).

Proposition 14. Assume that s0(x) = S0/U for all x ∈ [0, U ], and that β(S) = β0(1−S).

Then we can write N(t) as function of path I(t) and m(x̄, t) and the threshold x̄:

N(t) = I(t)
(

1− x̄

U

)
+

∫ t

0

e−ν(t−τ)

[
−σ

2

2
mx(x̄, τ)

]
dτ (77)

The expression in the right hand side of N(t) in Proposition 14 has the following interpre-
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tation. The term I(t)
(
1− x̄

U

)
has the fraction of those informed with values of x above the

threshold x̄. The second term takes into account the past flows of agents that were informed,

whose value of x went from below x̄ to higher than x̄.

Solving for path of N(t),M(t), I(t), S(t) given x̄. The solution is recursive: we first

solve for S(t) and I(t), and then using the path of I(t) we solve for N(t). This is done in the

next two propositions.

Proposition 15. Assume that β(S) = β0(1 − S) for β0 > ν. Furthermore assume that

s0(x) = S0/U for all x ∈ [0, U ]. For a given I(0) we have that the unique solution of

İ(t) = β0I(t)

[(
1− ν

β0

)
− I(t)

]
is given by

I(t) = 1− S(t) =

(
1− ν

β0

)
e(β0−ν)t(

1− ν
β0

)
I(0)

− 1 + e(β0−ν)t

(78)

Thus, if 0 < I(0) < 1 − ν
β0

, then I(t) converges monotonically to Iss = 1 − ν
β0
∈ (0, 1). If

I(0) < Iss, then

I(t) =

 is convex in t if t < log((Iss−I(0))/I(0))
β0−ν or I(t) < Iss

2

is concave in t if t > log((Iss−I(0))/I(0))
β0−ν or I(t) > Iss

2
.

As shown in Proposition 15, when I(0) is small, then I(t) displays a “logistic” type of

path of technology adoption, but I(t) is only the population that can adopt. We characterize

the number of adopters in the next proposition.

Proposition 16. Assume that s0(x) = S0/U for all x ∈ [0, U ]. Take the path I(t) as

given, and the optimal threshold x̄ < U . Then the unique solution of m(x, t) is:

m(x, t) =
∞∑
j=0

ϕj(x)b̂j(t) where ϕj(x) = sin
(

(j + 1
2
)π
(

1− x

x̄

))
b̂j(t) =

2

π(j + 1
2
)

(
e−µjt

I(0)

U
+ β0

∫ t

0

e−µj(t−τ) I(τ) (1− I(τ))

U
dτ

)
and µj = ν +

(
(j + 1

2
)π
x̄

)2
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and thus N(t) = I(t)−M(t) is given by:

N(t) = I(t)− x̄
U

(
H(t)I(0) + β0

∫ t

0

H(t− τ)I(τ) (1− I(τ)) dτ

)
where

H(z) ≡
∞∑
j=0

ωje
−µjz with ωj ≡

2(
π(j + 1

2
)
)2 > 0 and

∞∑
j=0

ωj = 1 .

Combining the expression for N(t) in Proposition 16 with the path of I(t) solved for

in Proposition 15 we obtain an explicit solution to N(t). Next we analyze the invariant

distribution in this model, which is the value at which it tends as t → ∞. We denote m̃

the density for m which satisfies: νm̃(x) = σ2

2
m̃xx(x) +β0(1 − ν

β0
) ν
β0

x̄
U

for all x ∈ [0, x̄] and

m̃x(x̄) = 0 and m̃(x̄) = 0. The next proposition gives the solution for m̃, as well as the

steady state number of adopters Nss.

Proposition 17. Assume that s0(x) = S0/U for all x ∈ [0, U ], that x̄ < U , β(S) =

β0(1− S), and that β0 > ν > 0. Then the steady state density m̃ is given by:

m̃(x) = (1− ν
β0

) 1
U

(
1− cosh(γx)

cosh(γx̄)

)
where γ =

√
2ν/σ and thus

Nss = Iss −
∫ x̄

0

m̃(x)dx = (1− ν
β0

)

[
1− x̄

U

(
1− tanh(γx̄)

γx̄

)]
(79)

It is interesting to see that even if I(0) = Iss ≡ 1− ν
β0

, then N(0) < Nss, and convergence

will take time. In words, even if all agents are informed about the technology it takes time for

the selection process to yield Nss. In particular equation (79) implies that Nss > Iss(1− x̄
U

),

since among the adopters there are agents who had x ≥ x̄ in the past and currently have

x < x̄.
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Figure E2: Equilibrium paths of N and I of Pure Learning Model
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Slow learning, β0 = 2. Fast Learning, β0 = 10.

Figure E2 illustrates the main results of this section. The left and right panel differ in

the value of β0, with the left panel with a slow learning β0 = 2, and the right panel a high

value, β0 = 10. In each panel we consider two initial condition for I(0): one with I(0) = Iss

(dotted lines), and with I(0) = Iss/100 (solid lines). The remaining parameters are all the

same. The paths for N are in blue, and the ones for A are in red. Focusing first in the

slow learning case (left panel), note that when I(0) is small, so that early on adoption is

restricted by the information about the technology, the fraction that adopt N(t) follows an

approximate logistic path, as explained above. Instead, if I(0) = Iss, then the path of N(t)

is concave in time, and starts at a high value at t = 0. In the case of fast learning, i.e. in

the right panel, the same dynamics of learning are also present, but in a much abbreviated

period of time.

Optimality of Equilibrium. The equilibrium path is constrained efficient. In particular,

if the planner can only give a subsidy to those that use the technology, then the optimal

subsidy is zero. This is because, given our assumptions about learning, such subsidy does

not affect the fraction of people that learn about the application. Furthermore, since we

assume that there is no complementary in the use of the technology, the individual decision

will coincide with the planner decision for x̄.
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E.1 Proofs for the learning model

Proof. (Proposition 14) We start by integrating the differential equation for N to obtain

N(t) = e−νtN(0) +

∫ t

0

e−ν(t−s)
[
−σ

2

2
mx(x̄, s) + β(S(s))S(s)

(
1− x̄

U

)]
ds

N(0) =
(
1− x̄

U

)
I(0)

Using that İ(t) = β(S(t))S(t)− νI(t), so∫ t

0

e−ν(t−s)β(S(s))S(s)ds =

∫ t

0

e−ν(t−s)İ(t)ds+

∫ t

0

e−ν(t−s)νI(t)ds

Integrating by parts:∫ t

0

e−ν(t−s)β(S(s))S(s)ds = I(t)− I(0)e−νt −
∫ t

0

νe−ν(t−s)I(s)ds+

∫ t

0

e−ν(t−s)νI(t)ds

= I(t)− I(0)e−νt

Thus:

N(t) = e−νt
(
1− x̄

U

)
I(0) +

∫ t

0

e−ν(t−s)
[
−σ

2

2
mx(x̄, s)

]
ds+

[
I(t)− I(0)e−νt

] (
1− x̄

U

)
= I(t)

(
1− x̄

U

)
+

∫ t

0

e−ν(t−s)
[
−σ

2

2
mx(x̄, s)

]
ds

�

Proof. (of Proposition 15) Integrating the p.d.e. for g we get:

St(t) ≡
∫ U

0

st(x, t)dx =
σ2

2

∫ U

0

sxx(x, t)dx− (ν + β(S(t)))

∫ U

0

s(x, t)dx+ ν

∫ U
0
dx

U

and using its boundary conditions at x = 0 and x = U :

St(t) = − (ν + β(S(t)))S(t) + ν all t ≥ 0

with initial condition:

s(0) = S0 for some constant 0 ≤ S0 = 1− I(0) ≤ 1
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Since we assume that s0(x) is constant across x, i.e. if

s0(x) =
S0

U
all x ∈ [0, U ]

then the solution satisfies

s(x, t) =
S(t)

U
all t ≥ 0 for all x ∈ [0, U ]

Thus we obtain

S ′ = − (ν + β0(1− S))S + ν = (1− S) (ν − β0S)

= ν (1− S)

(
1− S

S∗

)
It is convenient to solve for the path of I, the fraction of agents informed of the technology,

I(t) + S(t) = 1 for all t ≥ 0, so:

I ′ = −I (ν − β0(1− I)) = β0I (Iss − I) where Iss = 1− ν

β0

Let Ĩ = β0I, so that:

Ĩ ′ = Ĩ
(
Ĩss − Ĩ

)
= ĨssĨ − (Ĩ)2 where Ĩss = β0 − ν

Then we get that its solution is given by:

Ĩ(t) =
Ĩsse

Ĩsst

Ĩss
Ĩ(0)
− 1 + eĨsst

Note that

Iss
d

dt

Ĩsse
Ĩsst

Ĩss
Ĩ(0)
− 1 + eĨsst

= Ĩss
Ĩsse

Ĩsst

Ĩss
Ĩ(0)
− 1 + eĨsst

− Ĩsse
ĨsstĨsse

Ĩsst(
Ĩss
Ĩ(0)
− 1 + eĨsst

)2

= ĨssĨ(t)− (Ĩ(t))2

which verifies the answer. Using I = Ĩ/β0 we obtain the desired result.

�

Proof. (of Proposition 16) Given the path {S(t)} define

B(t) ≡ β(S(t))S(t) 1
U
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We start with

m(x, t) =
∞∑
j=0

ϕj(x)b̂j(t) where ϕj(x) = sin
(

(j + 1
2
)π
(

1− x

x̄

))
Note that each ϕj satisfies the lateral boundary conditions for m(x, t) at x = 0 and x = x̄

for all t. Then the p.d.e. can be written as:

0 = mt(x, t)−
σ2

2
mxx(x, t) + νm(x, t)−B(t) or

0 =
∞∑
j=0

ϕj(x)
[
b̂′j(t) + νb̂j(t) +

(
(j + 1

2
)π
x̄

)2
bj(t)−B(t)

〈ϕj ,1〉
〈ϕj ,ϕj ,〉

]
or for each j = 0, 1, . . . :

b̂′j(t) = −
[
ν +

(
(j + 1

2
)π
x̄

)2
]
bj(t) +B(t)

〈ϕj ,1〉
〈ϕj ,ϕj ,〉

or letting µj =
(
(j + 1

2
)π
x̄

)2

b̂j(t) = b̂j(0)e−µjt +
〈ϕj ,1〉
〈ϕj ,ϕj ,〉

∫ t

0

e−µj(t−s)B(s)ds

On the other hand {b̂j(0)} are given so that

M(0) =
x̄

U
I(0)

so that M(0) =
∫ x̄

0
m0(x)dx and if m0(x) does not depend on x we have M(0) = x̄m0(x):

m0(x) =
M(0)

x̄
=
I(0)

U

b̂j(0) =
〈ϕj ,1〉
〈ϕj ,ϕj〉

I(0)

U

which ensures:

∞∑
j=0

b̂j(0)ϕj(x) =
I(0)

U
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so

b̂j(t) =
〈ϕj ,1〉
〈ϕj ,ϕj〉

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)
Finally,

〈ϕj, 1〉 =
x̄

π(j + 1
2
)

and 〈ϕj, ϕj〉 =
x̄

2

Thus,

b̂j(t) =
2

π(j + 1
2
)

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)
Thus, if we compute:

M(t) =

∫ x̄

0

m(x, t)dx =
∞∑
j=0

b̂j(t)

∫ x̄

0

ϕj(x)dx =
∞∑
j=0

b̂j(t)〈ϕj, 1〉

substituting the expression for b̂j(t):

M(t) =
∞∑
j=0

(〈ϕj ,1〉)2

〈ϕj ,ϕj〉

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)

=
∞∑
j=0

2(
π(j + 1

2
)
)2

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)

since

(〈ϕj, 1〉)2

〈ϕj, ϕj〉
=

(
x̄

π(j + 1
2
)

)2
1

x̄/2
= x̄

2(
π(j + 1

2
)
)2

To check, note that at t = 0:

M(0) = I(0)
x̄

U

∞∑
j=0

(〈ϕj ,1〉)2

〈ϕj ,ϕj〉 = I(0)
x̄

U

∞∑
j=0

2(
π(j + 1

2
)
)2
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since 1 =
∑∞

j=0
2(

π(j+
1
2

)
)2 Thus

N(t) = I(t)−
∞∑
j=0

(〈ϕj ,1〉)2

〈ϕj ,ϕj〉

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)

= I(t)−
∞∑
j=0

x̄
2(

π(j + 1
2
)
)2

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)

= I(t)− x̄

U

∞∑
j=0

2(
π(j + 1

2
)
)2

(
e−µjtI(0) + β0

∫ t

0

e−µj(t−s)I(s)(1− I(s))ds

)

So we can write:

N(t) = I(t)− x̄
U

(
∞∑
j=0

ωje
−µjtI(0) + β0

∫ t

0

∞∑
j=0

ωje
−µj(t−s)I(s) (1− I(s)) ds

)
where

ωj ≡
2(

π(j + 1
2
)
)2 > 0 and

∞∑
j=0

ωj = 1 .

Defining

H(z) ≡
∞∑
j=0

ωje
−µjz

we can write:

N(t) = I(t)− x̄
U

(
H(t)I(t) + β0

∫ t

0

H(t− s)I(s) (1− I(s)) ds

)
where

ωj ≡
2(

π(j + 1
2
)
)2 > 0 and

∞∑
j=0

ωj = 1 .

�

Proof. (of Proposition 17) We can rewrite the o.d.e. for m̃ as:

m̃(x) = σ2

2ν
m̃xx(x) + (1− ν

β0
) 1
U

for all x ∈ [0, x̄]

The solution is given by a sum of particular solution, (1− ν
β0

) 1
U

, and two homogenous solutions.

The homogenous solutions are exponentials exp(±γx). The requirement that m̃x(0) = 0

implies that the coefficient that multiplies each of the exponentials has the same absolute

value but opposite sign, i.e. the two homogenous solutions combine into a cosh. Then,
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imposing that m̃(x̄) = 0 we get:

m̃(x) = (1− ν
β0

) 1
U

(
1− cosh(γx)

cosh(γx̄)

)
where γ =

√
2ν/σ

Thus, using that
∫ x̄

0
cosh(γx)
cosh(γx̄)

= tanh(γx̄)
γ

we obtain the desired result.

�

F Planning Problem

This section collects all the results used to analyze the planning problem.

F.1 Dynamics of N and Flow of Adoption Cost

Recall that

N(t) = 1−
∫ x̄(t)

0

m(x, t)dx.

Taking the derivative with respect to time

Nt(t) = − d

dt

∫ x̄(t)

0

m(x, t)dx

= −m(x̄(t), t)︸ ︷︷ ︸
=0

dx̄(t)

dt
−
∫ x̄(t)

0

mt(x, t)dx

where the first term is zero from the exit point of the distribution of non-adopters. Using

the law of motion of m

Nt(t) = −
∫ x̄(t)

0

(
−νm(x, t) + νf(x) +

σ2

2
mxx(x, t)

)
dx

= ν

∫ x̄(t)

0

m(x, t)− νx̄(t)

U
− σ2

2

∫ x̄(t)

0

mxx(x, t)dx

= ν (1−N(t))− νx̄(t)

U
− σ2

2

mx(x̄(t), t)︸ ︷︷ ︸
<0

−mx(0, t)︸ ︷︷ ︸
=0
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where the last term is zero from our assumption of reflecting barriers. Let the adoption cost

per unit of time A(t) be defined as

A(t) ≡ c (Nt(t) + νN(t))

= c

(
ν (1−N(t))− νx̄(t)

U
− σ2

2
mx(x̄(t), t) + νN(t)

)
= c

(
ν

(
1− x̄(t)

U

)
− σ2

2
mx(x̄(t), t)

)
where the first term are the agents that are replaced with x ≥ x̄(t). The second term are

the agents that hit x̄(t) from below per unit of time so they pay c and adopt the technology.

F.2 Derivation of the pde’s for the planner’s problem

To derive the problem in continuous time, we write the adoption problem in a discrete-time

discrete state setup. We do so by using finite-difference approximation and then we consider

the planning problem in that set-up. We obtain the first order conditions for a problem in

finite dimensions. Lastly, we take the limit to develop the corresponding p.d.e’s.

First we derive the finite difference approximation for a Brownian motion reflected be-

tween two barriers. The time step ∆ so that times are between t = 0,∆, 2∆, . . . . The space

step is ∆x so that x ∈ {x1, x2, . . . , xI}, where x1 = 0, xJ = U and xi+1− xi = ∆x. The p.d.e.

inside the barriers is

mt(x, t) = −νm(x, t) + νf(x) +
σ2

2
mxx(x, t)

Its finite difference approximation is:

mi,t+∆ −mi,t

∆
= −νmi,t + νfi +

σ2

2

(mi+1,t − 2mi,t +mi−1,t)

(∆x)2

for i = 2, . . . , I − 1. We can write the finite difference approximation as:

mi,t+∆ = mi,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fiν∆

+
σ2

2

∆

(∆x)2
mi+1,t +

σ2

2

∆

(∆x)2
∆mi−1,t

For the finite approximation, we have that since the law of motion must be local, and mean
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preserving:

m1,t+∆ = m1,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ f1ν∆

+
σ2

2

∆

(∆x)2
m2,t +

σ2

2

∆

(∆x)2
m1,t

mI,t+∆ = mI,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fIν∆

+
σ2

2

∆

(∆x)2
mI−1,t +

σ2

2

∆

(∆x)2
mI,t

We can write the l.o.m. at the boundaries as:

m1,t+∆ = m1,t (1− ν∆) + f1ν∆ +
σ2

2

∆

∆x

(m2,t −m1,t)

∆x

mI,t+∆ = mI,t (1− ν∆) + fIν∆ +
σ2

2

∆

∆x

(mI−1,t −mI,t)

∆x

At the reflecting boundaries x = 0 and x = U , the boundary conditions is mx(x, t) = 0.

Note that as ∆x → 0 we require that

(mI−1,t −mI,t)

∆x

=
(m2,t −m1,t)

∆x

→ 0

Now we get back to the planning problem. We will have two measures, {mi,t} and {gi,t}.
mi,t is the measures of those that have not adopted and gi,t the measure of those that have

adopted. Let αit ≥ 0 be the measure of adopting at t with x = xi at t. Thus at time t, the

measure αi,t is transferred from measure mi,t to measure gi,t Note that mi,t + gi,t = 1
I

since

the sum of the two is the invariant distribution. The initial condition are gi,0 = 0 ∀i and

mi,0 = 1
I

all non-adopters. The law of motion of the state is then:
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0 ≤ m1,t+∆ = m1,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fν∆

+
σ2

2

∆

(∆x)2
m2,t +

σ2

2

∆

(∆x)2
m1,t − α1,t

0 ≤ mi,t+∆ = mi,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fν∆

+
σ2

2

∆

(∆x)2
mi+1,t +

σ2

2

∆

(∆x)2
∆mi−1,t − αi,t for i = 2, . . . , I − 1

0 ≤ mI,t+∆ = mI,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fν∆

+
σ2

2

∆

(∆x)2
mI−1,t +

σ2

2

∆

(∆x)2
mI,t − αI,t

which can be written in vector notation as:

mt+1 = Lmt − αt ≥ 0

where L is an I × I stochastic matrix which depends on I, ν, σ2,∆ and ∆x. We assume that

∆ (ν + (σ/∆x)
2) < 1 so that all implied probabilities are positive.

max
{αt,mt+∆}∞t=0

∑
{t=0,∆,2∆,... }

(
1

1 + ∆r

)t{
U(mt) ∆ −

I∑
i=1

αitc

}

where

U(mt) ≡
I∑
i=1

(
1

I
−mit

)(
θ0 + θn

[
1−

I∑
j=1

mj,t

])
xi

subject to the law of motion:

mt+1 = Lmt − αt for all t = 0,∆, 2∆, . . .

and subject to non-negativity:

mj,t+1 ≥ 0 and αj,t ≥ 0 for all j = 1, . . . , I, and for all t = 0,∆, 2∆, . . .

Let
(

1
1+∆r

)t
λit be Lagrange multiplier of the law of motion for mit. Let Li be the ith row
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vector of the matrix L . The Lagrangian L becomes:

L =
∑

{t=0,∆,... }

(
1

1 + ∆r

)t{
U (mt) ∆−

I∑
i=1

αitc

}

+
∑

{t=0,∆,... }

(
1

1 + ∆r

)t{ I∑
i=1

λit (mi,t+∆ − Li ·mt + αit)

}

Derivative of Lagrangian with respect to αit:

∂L
∂αjt

=

(
1

1 + ∆r

)t
[λj,t − c]

Derivative of Lagrangian with respect to mjt for 2 ≤ j ≤ I − 1:

∂L
∂mj,t

=

(
1

1 + ∆r

)t
∂U (mt)

∂mj,t

∆

+

(
1

1 + ∆r

)t [
λj,t−∆(1 + ∆r)− λj,t

(
1− ν∆− σ2 ∆

(∆x)2

)]
−
(

1

1 + ∆r

)t
σ2

2

∆

(∆x)2
[λj+1,t + λj−1,t]

where

∂U (mt)

∂mjt

=− xj

(
θ0 + θn

(
1−

I∑
i=1

mi,t

))
− θn

I∑
i=1

(
1

I
−mit

)
xi

= −xj (θ0 + θnNt)− θn

(
U

2
−

I∑
i=1

mitxi

)

We can write mjt for 2 ≤ j ≤ I − 1:(
1

1 + ∆r

)−t
∂L
∂mjt

=
∂U (mt)

∂mjt

∆ + λj,t−∆(1 + ∆r)

− λj,t
(

1− ν∆− σ2 ∆

(∆x)2

)
− σ2

2

∆

(∆x)2
[λj+1,t + λj−1,t]
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and rearranging:

(1 + ∆r)λj,t−∆ =

(
1

1 + ∆r

)−t
∂L
∂mjt

− ∂U (mt)

∂mjt

∆

+ λj,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+
σ2

2

∆

(∆x)2
[λj+1,t + λj−1,t]

dividing by ∆ and further rearranging the expressions:

(r + ν)λj,t−∆ =

(
1

1 + ∆r

)−t
1

∆

∂L
∂mjt

− ∂U (mt)

∂mjt

− ν (λj,t − λj,t−∆)

+

(
λj,t − λj,t−∆

∆

)
+
σ2

2

(
λj+1,t − 2λj,t + λj−1,t

(∆x)2

)
For the bottom boundary j = 1 we have:(

1

1 + ∆r

)−t
∂L
∂m1t

=
∂U (mt)

∂m1t

∆ + λ1,t−∆(1 + ∆r)

− λ1,t

(
1− ν∆− σ2 ∆

(∆x)2

)
− σ2

2

∆

(∆x)2
[λ1,t + λ2,t]

(r + ν)λ1,t−∆ =

(
1

1 + ∆r

)−t
1

∆

∂L
∂m1t

− ∂U (mt)

∂m1t

− ν (λ1,t − λ1,t−∆)

+

(
λ1,t − λ1,t−∆

∆

)
+
σ2

2

1

∆x

(
λ2,t − λ1,t

∆x

)
For the top boundary j = I:

(r + ν)λI,t−∆ =

(
1

1 + ∆r

)−t
1

∆

∂L
∂mIt

− ∂U (mt)

∂mIt

− ν (λI,t − λI,t−∆)

+

(
λI,t − λI,t−∆

∆

)
+
σ2

2

1

∆x

(
λI−1,t − λI,t

∆x

)
Thus the limit as ∆ ↓ 0 and ∆x ↓ 0 is that

λx(0, t) = λx(U, t) = 0
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First order condition with respect to αit for t = 0,∆, . . . and j = 1, . . . , I::

λj,t − c ≤ 0 , αjt ≥ 0 and

αj,t [λj,t − c] = 0

First order condition with respect to mjt for t = ∆, 2∆, . . . and j = 1, . . . , I:

∂L
∂mjt

≤ 0 , mjt ≥ 0 and

mjt
∂L
∂mjt

= 0

Note that as ∆ ↓ 0 and ∆x ↓ 0 and x = xj we have

∂U (mt)

∂mjt

→ x(θ0 + θnN(t)) + θn

(
U

2
−
∫ U

0

m(z, t)z dz

)
Consider a xj = x for j = 2, . . . , I − 1 or 0 < x < U . Take the f.o.c. for mj,t derived

above and assume that ∂L
∂mjt

= 0. Take the limit as ∆ ↓ 0 and ∆x ↓ 0:

(r + ν)λ(x, t) = x(θ0 + θnN(t)) + θn

(
U

2
−
∫ U

0

m(z, t)z dz

)
+ λt(x, t) +

σ2

2
λxx(x, t)

If instead ∂L
∂mjt
≤ 0, then

(r + ν)λ(x, t) ≤ x(θ0 + θnN(t)) + θn

(
U

2
−
∫ U

0

m(z, t)z dz

)
+ λt(x, t) +

σ2

2
λxx(x, t)

We derive smooth pasting here. Suppose that at t we have λi,t = c for all i ≥ j, i.e. for

all x ≥ x̄(t), or λ(x, t) < c for x < x̄(t) and λ(x, t) = c for x ≥ x̄(t). Assume also mj,t > 0

and mj−1,t > 0, so that ∂L/∂m = 0 for both. Then we can write the f. o.c. as:

(r + ν)c = −∂U (mt)

∂mjt

− ν (c− λj,t−∆)

+

(
c− λj,t−∆

∆

)
+
σ2

2

1

∆x

(
c− 2c+ λj−1,t

∆x

)
Taking the limit as ∆x ↓ 0 we have: λx(x̄(t), t) = 0 .
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In summary, a planner problem is given by {x̄(t), λ(x, t),m(x, t)} the path of optimal

threshold so that adoption occurs for x ≥ x̄(t), the Lagrange multiplier V , and the density

of non-adopters m, respectively, such that the p.d.e. for the non-adopters is:

mt(x, t) = ν
(
1/U −m(x, t)

)
+ σ2

2
mxx(x, t) for x < x̄(t) and t ≥ 0

m(x, t) = 0 for x ≥ x̄(t) and t ≥ 0

mx(0, t) = 0 for t ≥ 0

The p.d.e. for the non-adopters:

ρλ(x, t) = x
(
θ0 + θn[1−

∫ x̄(t)

0

m(z, t)dz]
)

+ θn
(
U
2
−
∫ x̄(t)

0

m(z, t)z dz
)

+ σ2

2
λxx(x, t) + λt(x, t) for x ≤ x̄(t) and t ≥ 0

λ(x, t) = c for x ≥ x̄(t) and t ≥ 0

λx(x̄(t), t) = 0 for t ≥ 0

λx(0, t) = 0 for t ≥ 0

The conditions for x̄ are:

• We look for x̄(·) to be continuous t ≥ 0.

Conditions for m:

• We look for m(·, t) to be continuous for all x ∈ [0, U ] and t ≥ 0.

• We look for m(·, t) to be C2 for all x ∈ [0, x̄(t)], and t ≥ 0.

• We look for m(x, ·) to be C1 for all x ∈ [0, x̄(t)], and t ≥ 0.

• The initial boundary condition for m is m(x, 0) = 0 for all x ∈ [0, U ]

Conditions for λ:

• We look for λ(·, t) to be C1 for all x ∈ [0, U ].

• We look for λ(·, t) to be C2 for all x ∈ [0, x̄(t)], and t ≥ 0.

• We look for λ(x, ·) to be C1 for all x ∈ [0, x̄(t)], and t ≥ 0.

• The final boundary for λ is λ(x, T ) = 0 for all x ∈ [0, U ] (T may be +∞).
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F.3 Solution of the Steady State Planning Problem

The solution for λ̃ of the form

λ̃(x) = x
θ0 + θnNss

ρ
+
θn
ρ
Zssx+ C1e

ηx + C2e
−ηx

for η =
√

2ρ/σ2, and

θ0 + θnNss

ρ
+ η(C1e

ηx̄ss − C2e
−ηx̄ss) = 0

θ0 + θnNss

ρ
+ η(C1 − C2) = 0

Thus, given θ0+θnNss, and x̄ss, the constants (C1, C2) are the solution of two linear equations.

Moreover, the values of A1, A2 are proportional to θ̃ss given by

θ̃ss ≡
θ0 + θnNss

ρ
= η(C2 − C1) = η(C2e

−ηx̄ss − C1e
ηx̄ss)

Let C̃i ≡ Ci/θ̃ss. We can write:

1 = η(C̃2 − C̃1) = η(C̃2e
−ηx̄ss − C̃1e

ηx̄ss)

which has solution:

C̃1 =
1

η

(1− e−ηx̄ss)
(e−ηx̄ss − eηx̄ss)

C̃2 =
1

η

(1− eηx̄ss)
(e−ηx̄ss − eηx̄ss)

Using value matching we get:

ηx̄ss +
ηθn

ρθ̃ss
Zss + η(C̃1e

ηx̄ss + C̃2e
−ηx̄ss) =

η

θ̃ss
c

Letting y ≡ ηx̄ss we can write

ψ̃(y) ≡ y + η(C̃1e
y + C̃2e

−y) + η
θn

ρθ̃ss
Zss
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Using ηC̃2 = 1 + ηC̃1 and the definition of C̃1 we get

ψ̃(y) ≡ y + e−y − (1− e−y)
(ey − e−y)

(ey + e−y) + η
θn

ρθ̃ss
Zss

We have the following properties:

1. ψ̃(0) = η θn
ρθ̃ss

Zss

2. ψ̃′(y) = e2y+1
(ey+1)2 so ψ̃′(0) = 1

2
, ψ̃′(∞) = 1, and ψ̃′′(y) > 0,

3. ψ̃(y) = y
2

+ y3

24
+ o(y4) + η θn

ρθ̃ss
Zss and limy→∞

ψ̃(y)−y−η θn
ρθ̃ss

Zss

y
= 0

For fixed 0 < η <∞ and small c using the first order approximation:

x̄ss = 2

(
c

θ̃ss
− θn

ρθ̃ss
Zss

)
For the case when σ is small (i.e. η is large) we find:

x̄ss =
c

θ̃ss
+

σ√
2ρ
− θn

ρθ̃ss
Zss

Defining γ =
√

2ν/σ2, for the uniform case we have:

Nss = 1−
∫ x̄ss(Nss)

0

m̃(s;Nss)dx

= 1−
∫ x̄ss

0

1

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
dx

= 1− x̄ss
U

+
(eγx̄ss − e−γx̄ss)

γU (eγx̄ss + e−γx̄ss)

and

Zss = U/2−
∫ x̄ss(Nss)

0

xm̃(s;Nss)dx

= U/2−
∫ x̄ss

0

x

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
dx

= U/2− x̄2
ss

2U
+

1

U (eγx̄ss + e−γx̄ss)

∫ x̄ss

0

(
xeγx + xe−γx

)
dx

= U/2− x̄2
ss

2U
+

x̄

γU

(eγx̄ss − e−γx̄ss)
(eγx̄ss + e−γx̄ss)

+
1

γ2U

2

(eγx̄ss + e−γx̄ss)
− 1

γ2U
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F.4 Perturbation of the Planning Problem

We consider the planning problem with {x̄(t, ε), N(t, ε), λ(x, t, ε),m(x, t, ε)}. We again lin-

earize this equilibrium with respect to ε and evaluate it at ε = 0. We differentiate λ(x, t, ε)

with respect to ε at each (x, t) to obtain `(x, t) ≡ ∂
∂ε
λ(x, t, ε)

∣∣
ε=0

which solves the following

p.d.e

ρ`(x, t) = xθnn(t) + θnz(t) +
σ2

2
`xx(x, t) + `t(x, t) (80)

for x ∈ [0, x̄ss] and t ∈ [0, T ] and where z(t) ≡ ∂
∂ε
Z(t, ε)

∣∣
ε=0

and n(t) ≡ ∂
∂ε
N(t, ε)

∣∣
ε=0

. The

boundary conditions are:

`(x, T ) = 0

`x(0, t) = 0

`(x̄ss, t) = 0

λ̃xx(x̄ss)ȳ(t) + `x(x̄ss, t) = 0 (81)

Proposition 18. The solution for the KBE equation for ` is given by

`(x, t) =
∞∑
j=0

ϕj(x)ˆ̀(t) for x ∈ [0, x̄ss] and t ∈ [0, T ]

where for all j = 1, 2, ... we have:

ˆ̀(t) =

∫ T

t

e−ψj(τ−t))ŝj(τ)dτ for t ∈ [0, T ]

ŝj(t) = −θnn(t)
〈ϕj, x〉
〈ϕj, ϕj〉

− θnz(t)
〈ϕj, 1〉
〈ϕj, ϕj〉

for t ∈ [0, T ]

ϕj(x) = sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss]

〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

ˆ̀(T ) = 0

ψj = ρ+
1

2
σ2

(
π(1

2
+ j)

x̄ss

)2

The proof can be done by verifying that the equation hold at the boundaries, that for
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t > 0 the p.d.e holds in the interior since

ˆ̀′
j(t) = ψj ˆ̀(t) + ŝj(t) for t ∈ [0, T ] and j = 1, 2, ...

and since {ϕj(x)} form an orthogonal bases for functions, and finally that the boundary

holds at t = 0 for x ∈ [0, x̄ss].

Note that the derivative of the solution for λ is

`x(x̄ss, t) = −θn
∫ T

t

∞∑
j=0

cje
−ψj(τ−t)n(τ)dτ − θn

2

x̄ss

∫ T

t

∞∑
j=0

e−ψj(τ−t)z(τ)dτ

where cj = 2
(

1− cos(πj)

π(j+ 1
2

)

)
.

F.5 Perturbation analysis of the Planning Problem

Recall that from equation (81), ȳ(t) is equal to

ȳ(t) =
−`x(x̄ss, t)
λ̃xx(x̄ss)

=

∫ T

t

θn

λ̃xx(x̄ss)

∞∑
j=0

cje
−ψj(τ−t)n(τ)dτ +

∫ T

t

2θn

λ̃xx(x̄ss)x̄ss

∞∑
j=0

cje
−ψj(τ−t)z(τ)dτ

=

∫ T

t

Gyn(τ − t)n(τ)dτ +

∫ T

t

Gyz(τ − t)z(τ)dτ (82)

The expression for n(t) is given by equation (76) and can be written as

n(t) = n0(t) +

∫ t

0

Hny(t− s)ȳ(s)ds.

where as before n0(t) ≡ −
∑∞

j=0
x̄ss

π( 1
2

+j)

〈ϕj ,ω〉
〈ϕj ,ϕj〉e

−µjt. We can obtain a similar expression for
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z(t) using the solution for p(x, t) as

z(t) = −
∫ x̄ss

0

xp(x, t)dx

= −
∞∑
j=0

p̂j(t)

∫ x̄ss

0

xϕj(x)dx

= −
∞∑
j=0

x̄2
ss(π(j + 1

2
)− cos(jπ)

(π(1
2

+ j))2

〈ϕj, ω〉
〈ϕj, ϕj〉

e−µjt + m̃x(x̄ss)σ
2

∫ t

0

∞∑
j=0

π(j + 1
2
)− cos(jπ))

π(j + 1
2
)

e−µj(t−τ)ȳ(τ)dτ

= z0(t) +

∫ t

0

Hzy(t− s)ȳ(s)ds

where z0(t) ≡ −
∑∞

j=0
cj
2

x̄2
ss

π(j+ 1
2

)

〈ϕj ,ω〉
〈ϕj ,ϕj〉e

−µjt and cj ≡
(

1− cos(πj)

π(j+ 1
2

)

)
. Then, equation (82) can

be written as

ȳ(t) =

∫ T

t

Gyn(τ − t)
(
n0(τ) +

∫ t

0

Hny(τ − s)ȳ(s)ds

)
dτ

+

∫ T

t

Gyz(τ − t)
(
z0(τ) +

∫ t

0

Hzy(τ − s)ȳ(s)ds

)
dτ

=

∫ T

t

Gyn(τ − t)n0(τ)dτ +

∫ T

t

∫ t

0

Gyn(τ − t)Hny(τ − s)ȳ(s)ds dτ

+

∫ T

t

Gyz(τ − t)z0(τ)dτ +

∫ T

t

∫ t

0

Gyz(τ − t)Hzy(τ − s)ȳ(s)ds dτ

= ȳ0(t) +

∫ T

0

M(t, s)ȳ(s)ds

where

ȳ0(t) ≡
∫ T

t

Gyn(τ − t)n0(τ)dτ +

∫ T

t

Gyz(τ − t)z0(τ)dτ

and∫ T

0

M(t, s)ȳ(s)ds ≡
∫ T

t

∫ t

0

Gyn(τ − t)Hny(τ − s)ȳ(s)ds dτ +

∫ T

t

∫ t

0

Gyz(τ − t)Hzy(τ − s)ȳ(s)ds dτ

=

T∫
0

T∫
max{t,s}

Gyn(τ − t)Hny(τ − s)ȳ(s)ds dτ +

T∫
0

T∫
max{t,s}

Gyz(τ − t)Hzy(τ − s)ȳ(s)ds dτ
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with

Gyn(w) =
θn

λ̃xx(x̄ss)

∞∑
j=0

cje
−ψj(w)

Gyz(w) =
2θn

λ̃xx(x̄ss)x̄ss

∞∑
j=0

e−ψj(w)

Hzy(q) =
m̃x(x̄ss)σ

2

2

∞∑
j=0

cje
−µj(q)

Hny(q) =
m̃x(x̄ss)σ

2

x̄ss

∞∑
j=0

e−µj(q)

where e−rqGyn(w)Hny(q) = Gyz(w)Hzy(q)e
−rq. Using the definitions of n0(t) and z0(t) we

first find the value of ȳ0(t) as

ȳ0(t) ≡
∫ T

t

Gyn(τ − t)n0(τ)dτ +

∫ T

t

Gyz(τ − t)z0(τ)dτ

=
−θn

λ̃xx(x̄ss)

∫ T

t

∞∑
j=0

∞∑
i=0

cj
x̄ss

π(1
2

+ i)

〈ϕi, ω〉
〈ϕi, ϕi〉

e−ψj(τ−t)e−µiτdτ

+
−θn

λ̃xx(x̄ss)

∫ T

t

∞∑
j=0

∞∑
i=0

ci
x̄ss

π(1
2

+ i)

〈ϕi, ω〉
〈ϕi, ϕi〉

eψjte−ψj(τ−t)e−µiτdτ

=
−θn

λ̃xx(x̄ss)

∞∑
j=0

∞∑
i=0

(cj + ci)
x̄ss

π(1
2

+ i)

〈ϕi, ω〉
〈ϕi, ϕi〉

eψjt
(
e−(ψj+µi)t − e−(ψj+µi)T

ψj + µi

)
(83)

Then, we find

∫ T

0

M(t, s)ȳ(s)ds =

T∫
0

 T∫
max{t,s}

Gyn(τ − t)Hny(τ − s)ȳ(s)dτ +

T∫
max{t,s}

Gyz(τ − t)Hzy(τ − s)ȳ(s)dτ

 ds

= Θ̃(x̄ss)

∫ T

0

∫ T

max{t,s}

∞∑
j=0

∞∑
i=0

cje
−ψj(τ−t)e−µi(τ−t)ȳ(s)dτ ds

+ Θ̃(x̄ss)

∫ T

0

∫ T

max{t,s}

∞∑
j=0

∞∑
i=0

cie
−ψj(τ−t)e−µi(τ−t)ȳ(s)dτ ds
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where we let Θ̃(x̄ss) ≡ θnm̃x(x̄ss)σ2

λ̃xx(x̄ss)x̄ss
. Solving the integrals we get

∫ T

0

M(t, s)ȳ(s)ds = Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

cje
ψjt+µis

(
e−(ψj+µi) max{t,s} − e−(ψj+µi)T

ψj + µi

))
ds

+ Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

cie
ψjt+µis

(
e−(ψj+µi) max{t,s} − e−(ψj+µi)T

ψj + µi

))
ds

= Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

(cj + ci)e
ψjt+µis

(
e−(ψj+µi) max{t,s} − e−(ψj+µi)T

ψj + µi

))
ds

= Θ̃(x̄ss)

∫ T

0

K̃(t, s)ds.

Thus, equation (82) can be written as

ȳ(t) = ȳ0(t) + Θ̃(x̄ss)

∫ T

0

K̃(t, s)ȳ(s)ds

Notice also that since e−rtM(t, s) = e−rsM(t, s)

∫ T

0

e−rtM(t, s)ȳ(s)ds = Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

(cj + ci)e
µjt+µis

(
e−(r+µj+µi) max{t,s} − e−(r+µj+µi)T

µj + µi + r

))
ds

G HJB equations for a(x, t) and v(x, t)

Moreover, a(x, t) solves the p.d.e. and boundary conditions for all t ≥ 0:

ρa(x, t) = x(θ0 + θnN(t)) +
σ2

2
axx(x, t) + at(x, t) if x ∈ [0, U ]

ax(0, t) = ax(U, t) = 0

where the boundary conditions arise from our assumption of reflecting barriers. Throughout,

we assume 0 ≤ a(x, t) ≤ U(θ0+θn)
ρ

for all x, t, and 0 < c < U(θ0+θn)
ρ

.

Adoption Decision: The value function of an agent that has not adopted solves the fol-

lowing variational inequality:

ρv(x, t) = max

{
σ2

2
vxx(x, t) + vt(x, t) , ρ (−c+ a(x, t))

}
for all t ≥ 0 and x ∈ [0, U ]. We conjecture that the optimal decision rule is given by a path
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for the threshold x̄(t) ∈ (0, U) such so that, for each t ≥ 0, the following holds

ρv(x, t) =
σ2

2
vxx(x, t) + vt(x, t) if 0 ≤ x ≤ x̄(t)

v(x, t) = −c+ a(x, t) if x̄(t) ≤ x ≤ U

If v(·, t) is C1 we have the following boundary conditions for all t ≥ 0:

v(x̄(t), t) = a(x̄(t), t)− c Value Matching

vx(x̄(t), t) = ax(x̄(t), t) Smooth Pasting

vx(0, t) = 0 Reflecting

where the first one is the value matching condition, the second the smooth pasting condition,

and the last one arises from the reflecting barrier at x = 0.
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OTHER TECHNICAL APPENDICES

H The dynamics of the deterministic model

For each x, let a(x, t) = xα(t) where ρα(t) = θ0 + θnN(t) + αt(t). We fix an x and a path

α(t) for t ≥ 0. Let t∗(x) be the optimal t that solves the adoption problem:

t∗(x) = arg max
t≥0

G(t, x) with G(x, t) ≡ e−ρt(α(t)x− c)

The necessary first order conditions if α(t) is differentiable at t = t∗(x) <∞ are:23

−ρ(α(t∗)x− c) + xαt(t
∗) = 0 if t∗(x) > 0

−ρ(α(0)x− c) + xαt(0) ≤ 0 if t∗(x) = 0

Furthermore, since not adopting is feasible (i.e. t =∞) and yields a zero payoff, then

α(t∗(x))x ≥ c for all x.

Given t∗(x) we can define x̄(t) as the smallest value of x that makes t = t∗(x) optimal for

any t ≥ 0.24 We will look for an equilibrium where at any t ≥ 0 someone adopts, so

ρ(α(t)x̄(t)− c) = x̄(t)αt(t)

provided α is differentiable at t.25 The following two lemmas are useful to characterize the

solution for the deterministic case. The proof of both lemmas can be found in Appendix ??.

Lemma 7. Assume that for t > 0 there is some x for which 0 < t∗(x) < ∞, we denote

the smallest of such x as x̄(t). Then if the first and second order necessary conditions holds,

then N(t) and α(t) are weakly increasing in time.

23If α(t) is not differentiable at 0 < t = t∗(x) <∞:

−ρ(α(t∗)x− c) + xα+
t (t∗) ≤ 0 ≤ −ρ(α(t∗)x− c) + xα−

t (t∗)

where α−
t (t∗) and α+

t (t∗) are the left and right derivatives of α(t) at t = t∗(x). Note that α is differentiable
at t provided that N(t) does not jump at t. If N(t) jumps at t, then α has right and left derivatives.

24Since in equilibrium 0 ≤ N(t) ≤ 1, then θ0
ρ ≤ α(t) ≤ θ0+θn

ρ and 0 < ρc
θ0+θn

≤ x̄(t) ≤ ρc
θ0

. Note that we

allow x̄(t) > U , but in this case everybody is adopting at t. Thus, we assume that (θ0+θn)
ρ > c

U , otherwise
nobody can ever adopt, and c > 0, so that some type will never adopt.

25If α is not differentiable at t, then: x̄(t)α+
t (t) ≤ ρ(α(t)x̄(t)− c) ≤ x̄(t)α−

t (t).
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The fact that the threshold x̄(t) is weakly decreasing rules out a solution where the

number of adopters is decreasing through time.

Lemma 8. Assume that x̄(t) is continuously differentiable with respect to time, that N(t) is

weakly increasing in time, and that the initial condition satisfies M0(x) ≡
∫ x

0
m0(z)dz ≤ F (x)

for all x. Then, x̄(t) must be decreasing in time, and if in an interval N(t) is strictly

decreasing, then x̄(t) must be strictly decreasing. Thus,

M(x, t) ≡
∫ x

0

m(z, t)dz =

(1− e−νt)F (x) + e−νtM0(x) for x ≤ x̄(t)

(1− e−νt)F (x̄(t)) + e−νtM0(x̄(t)) for x > x̄(t)

The previous lemmas has the following immediate implication.

Lemma 9. Consider the initial condition m0(x) = f(x) holding for all x < x̄(0). Then:

m(x, t) = f(x) and N(t) = 1− F (x̄(t)).

The last lemma states that if we start the economy with a threshold x̄(0) and no agent

below that threshold has adopted, then all agents with x > x̄(0) will immediately adopt and

the distribution of the non adopters is time invariant. This result is intuitive and it is at the

heart of the lack of dynamics in the equilibrium of the deterministic problem.

Assuming Lemma 9 holds and that m0(x) = f(x), combining the first order conditions

with the law of motion for α(t), ρα(t)− αt(t) = θ0 + θn(1− F (x̄(t))), we get

x̄(t) [θ0 + θn(1− F (x̄(t)))]− ρc = 0 (84)

Note that in equation (84) the solution for x̄(t) does not depend on t. Thus, we can construct

equilibrium where x̄(0) = x̄(t) for all t ≥ 0. We summarize this result in the following

proposition

Proposition 19. Consider the initial condition m0(x) = f(x) for all x < x̄(0). Then

the solution implies a time invariant threshold x̄(t) = x̄ solving equation (84), immediate

adoption for all agents with x ≥ x̄, and a time-invariant fraction of adopters N(t) = N =

1− F (x̄).

Note that equation (84) may have multiple solutions. Given that from Lemma 7 we know

that x̄(t) is weakly decreasing and α(t) must be strictly increasing in time, then the lower

root is the stable solution in the sense that, if the economy is at that point it will remain

there forever. We show below that other paths are also possible in the presence of multiple

solutions, with the fraction of adopters N(t) ratcheting up at discrete moments in time.
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Both cases are shown in Figure 1, which shows the solutions of equation (84). In Panel (a)

the solution with low x̄ss is the stable solution, since x̄(t) is weakly decreasing from Lemma 7,

and the one with higher adoption, since N(t) = 1− F (x̄(t)). Panel (b) shows that with low

strategic complementarities (i.e. low θn), there is only one steady state.

Let us consider the case with two possible stationary equilibria, denoted by x̄H > x̄L, with

associated adoption rates NH < NL, and the stationary value function ρα(t) = θ0 + θnN(t)

(recall αt = 0) with solution ᾱH = (θ0 + θnNH) /ρ and ᾱL = (θ0 + θnNL) /ρ, where αH < αL

since a low threshold yields higher utility due to the larger adoption rate.

We can now check that indeed t∗(x) are optimal for a steady state equilibrium. Since

α(t) = ᾱi for i = L,H, then the adoption problem becomes:

t∗(x) = arg max
t≥0

e−ρt (ᾱix− c)

and the solution is:

t∗(x) =

∞ if x < c
ᾱi

0 if x ≥ c
ᾱi

Hence, there are no dynamics in the deterministic case. Nonetheless, an equilibrium can

be constructed where x̄(t) is piecewise continuous and jumps from x̄H to x̄L at some arbitrary

time T and where the value of N(t) also jumps. For instance, let x̄(t) = x̄H for t ∈ [0, T )

and let x̄(t) = x̄L for t ∈ [T,∞), where T > 0 is arbitrary. For t ≥ T , set α(t) = ᾱL and for

t ∈ [0, T ), solve αt(t) = ρ(α(t)− αH) with boundary condition α(T ) = ᾱL. This gives

α(t) = ᾱH + (ᾱL − ᾱH) e−ρ(T−t)

Note that α′(t) > 0 for t ∈ [0, T ) and α(0) > ᾱH . The equilibrium so constructed satisfies

the first and second order condition for t∗(x). The following proposition describes such

“ratcheting” equilibria:

Proposition 20. Assume that m0(x) = f(x) for all x ∈ [0, U ]. Let X̄ be the set of steady

state equilibria, i.e.

X̄ ≡ {0 < z̄i ≤ U : ρc = z̄i [θ0 + θn (1− F (z̄i))] }

An equilibrium is described by a path x̄(t) that at times 0 = t0 ≤ t1 < t2 < tm <∞:

x̄(t) = z̄i ∈ X̄ for ti−1 ≤ t < ti for all i = 1, 2, . . . ,m

and where z̄i > z̄i+1 for all i = 1, 2, . . . ,m.
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In words, an equilibrium is given by a piece-wise constant path for x̄(t), such that at each

discontinuity point x̄(t) jumps down to a value that is one of the steady-state solutions of

equation (84). The set of equilibria thus includes the fully static one where x̄(0) = z̄m, as

well as several other time-varying paths where the elements of X̄ (the steady state solutions)

and the time sequence ti are arbitrarily selected subject to the constraint that the path for

x̄(t) must be weakly decreasing.

H.1 Proofs of the deterministic model

Proof. (of Lemma 7) The necessary second order condition for 0 < t∗(x) <∞ is:

Gtt(t, x)|t=t∗(x) = e−ρt
∗

(−ραt(t∗)x+ αtt(t
∗)x)

Differentiating with respect to time the law of motion for α (i.e. ρα(t) = θ0 + θnN(t) +αt(t))

we have:

ραt(t) = θnNt(t) + αtt(t)

Evaluating the second order condition at (t, x̄(t)) and replacing αtt(t):

Gtt(t, x̄(t)) = e−ρt (−ραt(t)x̄(t) + x̄(t)αtt(t))

= e−ρt (−ραt(t)x̄(t) + x̄(t) (ραt(t)− θnNt(t))) = −e−ρtx̄(t)θnNt(t)

Thus, if the necessary first order condition holds, i.e if Gtt(t, x̄(t)) ≤ 0, then Nt(t) ≥ 0 and

hence it is weakly increasing.

Furthermore, using the first order condition at t > 0

ρ(α(t)x̄(t)− c) = αt(t)x̄(t)

Note that if αt(t) is strictly decreasing then α(t)x̄(t) − c < 0, which is a contradiction with

α(t)x̄(t)− c ≥ 0. Thus, for a t where α is differentiable (no jump on N), then α(t) must be

weakly increasing.

Lastly, notice that

N(t) = 1−
∫ x̄(t)

0

m(z, t)dz

= 1−
[
M0(x̄(t))e−νt + F (x̄(t))

(
1− e−νt

)]

102



where the second line uses that x̄(t) is decreasing in time. Taking the derivative of N(t) with

respect to time:

Nt(t) =
[
m0(x̄(t))e−νt + f(x̄(t))

(
1− e−νt

)]
x̄t(t)− νe−νt [F (x̄(t))−M0(x̄(t))]

�

Proof. (of Lemma 8) The proof has two parts. The first part establishes that x̄ is decreasing.

The second one uses that property to obtain the law of motion of M . Differentiating the

definition of N

N(t) = 1−
∫ x̄(t)

0

m(x, t)dx

with respect to t, and using that m(·, t) is zero for x > x̄(t) is in general strictly positive at

the left limit m(x̄(t)−, t), we have:

Nt(t) = x̄t(t)1{x̄t(t)≤0}m(x̄(t)−, t)−
∫ x̄(t)

0

mt(x, t)dx

Using the law of motion of m we have:

Nt(t) = x̄t(t)1{x̄t(t)≤0}m(x̄(t)−, t) + ν

∫ x̄(t)

0

(
m(x, t)− f(x)

)
dx

= x̄t(t)1{x̄t(t)≤0}m(x̄(t)−, t) + ν

∫ x̄(t)

0

(
m(x, t)− f(x)

)
dx

= x̄t(t)1{x̄t(t)≤0}m(x̄(t)−, t) + ν (M(x, t)− F (x, t))

But since, M(x, t) ≤ F (x, t) for all x, then if Nt(t) ≥ 0, then x̄t(t) ≤ 0.

Now, let use that x̄(t) is decreasing. In this case if x < x̄(t) then it must be that s̄ ≤ x̄(s)

for all s ≤ t. Then for such x we have:

mt(x, s) = −ν (m(x, s)− f(x)) for all s ≤ t

We can solve this o.d.e. for each x, using the boundary m(x, s) = m0(x). This gives

m(x, t) =

(1− e−νt)f(x) + e−νtm0(x) for all x ≤ x̄(t)

0 for all x > x̄(t)

Integrating this density we get the desired result of its CDF M(x, t). �
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I Additional Figures and Tables

Figure I3: Average Transaction Size

9
10

11
Av

er
ag

e 
Tr

an
sa

ct
io

n 
Si

ze
 (l

og
s)

2017m1 2019m1 2021m1
 

 

Notes: The figure shows the evolution of the average transaction size in SINPE.

Figure I4: Transactions by Sender-Receiver Type
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Notes: Transactions are classified according to the type of user. Individuals correspond with Costa
Rican adult citizens. Firms correspond with formal enterprises.
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Figure I5: Share of Transactions Between Types of Users (Weighted by Amount)
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Notes: The figure shows total number of SINPE transactions between four different types of users, as a share

of all of their transactions.

Figure I6: Mean Number of Connections per User
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(a) Receivers (b) Senders
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Figure I7: Average Age at the Time of Adoption
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Figure I8: Marginal Effect of Network Changes on Usage Intensity
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Notes: This figure plots the marginal effect of ∆N coworkers
i in the specification described by Column

(3) of Table 6. Bars denote 95% confidence intervals. The dependent variable in this estimation is
the number of transactions (transformed using the inverse hyperbolic sine function) on each period
for each user.
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Figure I9: Entry and Diffusion Across and Within Networks of Relatives and Coworkers
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(a) Entry Across Networks (b) Diffusion Within Network
(Relatives) (Relatives)
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(c) Entry Across Networks (d) Diffusion Within Network
(Coworkers) (Coworkers)

Notes: Panel (a) and Panel (c) show the timing of adoption across networks, defined as relatives and cowork-

ers, respectively. They show the entry date (first time an individual within a network adopts the technology)

across different percentiles of the distribution of networks. Percentiles are calculated in the period with

highest adoption in the sample given the share of individuals that had adopted the technology. Panel (b)

and Panel (d) use the same classification of percentiles to show the patterns of diffusion of the technology

within networks.
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Table I1: Mean Share of Transactions Within Network (2015-2021)

(1) (2) (3) (4)

Neighborhood Firm Family Union of all three

0.69
Neighborhood 0.46
Firm 0.61 0.39
Family 0.54 0.59 0.39

Notes: We construct average shares using data from May 2015, when the technology was intro-
duced, to December 2021. Shares using data from the middle of the period (year 2018) only are
shown in Table 1.

Table I2: Amount Transacted and Size of Network at Entry

Dependent variable: Amount transacted (logs)

(1) (2) (3)

Size of Neighbors’ Network at Entry -5.402***
(0.013)

Size of Coworkers’ Network at Entry -1.503***
(0.048)

Size of Family Network at Entry -1.222***
(0.009)

Observations 7,135,126 163,050 6,742,411
R-squared 0.022 0.006 0.003
Network×Time FE Yes Yes Yes

Notes: The dependent variable in this estimation is the amount transacted each month for each
user, which we transform using the inverse hyperbolic sine function. The coefficient describes the
effect of increasing the share of an individual’s network who had adopted the app at the time
when she downloaded it. We run regressions using data from May 2015, when the technology was
introduced, to December 2021.
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Table I3: Intensity of Usage and Network Changes

Dependent variable: ∆ Value of Transactions

(1) (2) (3) (4)
(a) Logs

∆ Share Neighborhood Adopters 2.161*** 1.985***
(0.048) (0.060)

∆ Share Coworkers Adopters 0.193*** 0.182***
(0.009) (0.009)

∆ (Log) Wage 0.074*** 0.074***
(0.001) (0.001)

∆ Share Relatives Adopters 0.300*** 0.317***
(0.006) (0.007)

Observations 23,078,243 14,871,389 21,682,281 13,944,882
R-squared 0.016 0.019 0.016 0.020
Time FE Yes Yes Yes Yes
RMSE 1.181 1.155 1.180 1.154

(b) Davis & Haltiwanger

∆ Share Neighborhood Adopters 1.603*** 1.477***
(0.033) (0.043)

∆ Share Coworkers Adopters 0.124*** 0.116***
(0.006) (0.007)

∆ (Log) Wage 0.057*** 0.058***
(0.001) (0.001)

∆ Share Relatives Adopters 0.217*** 0.229***
(0.004) (0.005)

Observations 23,078,243 14,871,389 21,682,281 13,944,882
R-squared 0.019 0.023 0.019 0.023
Time FE Yes Yes Yes Yes
RMSE 0.848 0.835 0.847 0.835

(c) Inverse hyperbolic sine

∆ Share Neighborhood Adopters 2.161*** 1.985***
(0.048) (0.060)

∆ Share Coworkers Adopters 0.193*** 0.182***
(0.009) (0.009)

∆ (Log) Wage 0.074*** 0.074***
(0.001) (0.001)

∆ Share Relatives Adopters 0.300*** 0.317***
(0.006) (0.007)

Observations 23,078,243 14,871,389 21,682,281 13,944,882
R-squared 0.016 0.019 0.016 0.020
Time FE Yes Yes Yes Yes
RMSE 1.181 1.155 1.179 1.153

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors are in parentheses.
Extreme values (one and 99 percentile) were trimmed from the dependent variables.
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Table I4: Changes in Intensity of Usage using Logs and Network Changes

Dependent variable: ∆ ln Value of Transactions

(1) (2) (3) (4)
(a) Neighbors Network

∆ Share Neighborhood Adopters 5.339*** 2.173*** 4.852*** 1.136***
(0.019) (0.047) (0.024) (0.047)

∆ (Log) COVID-19 Cases 0.004***
(0.000)

Observations 23,516,226 23,516,226 20,390,302 23,516,226
R-squared 0.002 0.016 0.001 0.018
Time FE No Yes No Yes
Cohort FE No No No Yes

(b) Coworkers Network

∆ Share Coworkers Adopters 0.597*** 0.191*** 0.542*** 0.138***
(0.009) (0.009) (0.009) (0.009)

∆ (Log) COVID-19 Cases 0.016***
(0.000)

∆ (Log) Wage 0.089*** 0.074*** 0.094*** 0.074***
(0.001) (0.001) (0.001) (0.001)

Observations 15,149,599 15,149,599 12,877,597 15,149,599
R-squared 0.001 0.020 0.001 0.022
Time FE No Yes No Yes
Cohort FE No No No Yes

(c) Family Network

∆ Share Relatives Adopters 0.491*** 0.297*** 0.376*** 0.264***
(0.006) (0.006) (0.006) (0.006)

∆ (Log) COVID-19 Cases 0.017***
(0.000)

Observations 22,091,730 22,091,730 19,127,247 22,091,730
R-squared 0.000 0.016 0.000 0.018
Time FE No Yes No Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors are in parentheses.
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Table I5: Changes in Intensity of Usage using Davis and Haltiwanger (1992) and Network
Changes

Dependent variable: %∆ Value of Transactions

(1) (2) (3) (4)
(a) Neighbors Network

∆ Share Neighborhood Adopters 4.850*** 2.194*** 2.397*** 2.497***
(0.015) (0.039) (0.020) (0.039)

∆ (Log) COVID-19 Cases 0.003***
(0.000)

Observations 27,543,895 27,543,895 23,001,237 27,543,895
R-squared 0.002 0.015 0.000 0.016
Time FE No Yes No Yes
Cohort FE No No No Yes

(b) Coworkers Network

∆ Share Coworkers Adopters 0.478*** 0.175*** 0.360*** 0.183***
(0.007) (0.007) (0.008) (0.007)

∆ (Log) COVID-19 Cases 0.011***
(0.000)

∆ (Log) Wage 0.073*** 0.060*** 0.074*** 0.060***
(0.001) (0.001) (0.001) (0.001)

Observations 17,482,693 17,482,693 14,206,963 17,482,693
R-squared 0.001 0.019 0.001 0.019
Time FE No Yes No Yes
Cohort FE No No No Yes

(c) Family Network

∆ Share Relatives Adopters 0.456*** 0.301*** 0.268*** 0.312***
(0.005) (0.005) (0.005) (0.005)

∆ (Log) COVID-19 Cases 0.009***
(0.000)

Observations 25,848,605 25,848,605 21,547,650 25,848,605
R-squared 0.000 0.016 0.000 0.016
Time FE No Yes No Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors are in parentheses.
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Table I6: Changes in Intensity of Usage using Inverse Hyperbolic Sine and Network Changes

Dependent variable: %∆ Value of Transactions

(1) (2) (3) (4)
(a) Neighbors Network

∆ Share Neighborhood Adopters 11.894*** 5.239*** 3.473*** 7.661***
(0.045) (0.127) (0.063) (0.128)

∆ (Log) COVID-19 Cases 0.008***
(0.001)

Observations 31,725,932 31,725,932 25,072,146 31,725,932
R-squared 0.001 0.005 0.000 0.008
Time FE No Yes No Yes
Cohort FE No No No Yes

(b) Coworkers Network

∆ Share Coworkers Adopters 1.217*** 0.486*** 0.804*** 0.586***
(0.024) (0.025) (0.026) (0.025)

∆ (Log) COVID-19 Cases 0.023***
(0.001)

∆ (Log) Wage 0.136*** 0.113*** 0.130*** 0.114***
(0.003) (0.003) (0.003) (0.003)

Observations 19,818,322 19,818,322 15,079,598 19,818,322
R-squared 0.000 0.007 0.000 0.008
Time FE No Yes No Yes
Cohort FE No No No Yes

(c) Family Network

∆ Share Relatives Adopters 1.204*** 0.804*** 0.561*** 0.892***
(0.017) (0.017) (0.018) (0.017)

∆ (Log) COVID-19 Cases 0.017***
(0.001)

Observations 29,740,420 29,740,420 23,455,831 29,740,420
R-squared 0.000 0.005 0.000 0.008
Time FE No Yes No Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors are in parentheses.
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Table I7: Weighted Changes in Intensity of Usage and 2021 Network Changes)

Dependent variable: %∆ Value of Transactions

(1) (2) (3)

Logs Davis & Haltiwanger Inverse hyperbolic sine

∆ Share Adopters in 2021 Network 2.249*** 1.867*** 4.797***
(0.009) (0.010) (0.032)

Observations 23,512,962 27,532,941 31,682,27
R-squared 0.018 0.018 0.007
Time FE Yes Yes Yes

Notes: The unit of observation is the individual. We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors, clustered by individual,
are in parentheses.

Table I8: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff

Dependent Variable: ∆ Value of transactions (inverse hyperbolic sine)

(1) (2) (3) (4)

∆N coworkers
i 4.877*** 3.458*** 2.207*** 2.014***

(0.385) (0.410) (0.455) (0.454)
∆ lnwagei 0.812*** 0.737*** 0.763***

(0.106) (0.105) (0.108)
∆Covidi 0.336*** 0.333***

(0.050) (0.053)

Observations 2,585 2,585 2,585 2,585
R-squared 0.068 0.144 0.160 0.197
Time FE No Yes Yes Yes
Cohort FE No No No Yes

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, until December 2021. Standard
errors are in parentheses.
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Table I9: Leave-One-Out Instrument (Value of Transactions)

(1) (2) (3)

First Stage. Dependent Variable: ∆Nneighborhood
it

∆Ndistrict
−i,t 0.749*** 0.697***

(0.007) (0.009)

Observations 125,010 125,010
R-squared 0.528 0.539
F-statistic 10,897.2 2,527.6
Time FE No Yes

Second Stage. Dependent variable: %∆ Value of Transactions

Logs Davis & Haltiwanger Inverse hyperbolic sine

∆Ndistrict
−i,t 1.175*** 1.195*** 2.736***

(0.039) (0.031) (0.103)

Observations 19,876,697 23,276,207 26,792,396
R-squared 0.016 0.015 0.005
Time FE Yes Yes Yes

Notes: The unit of observation is the individual. Robust standard errors are in parentheses in the
first panel; standard errors clustered by individual are in parentheses in the second panel.

J Details on Mass Layoffs

This section provides additional details on the choices made to construct the variables and

sample used in Section 8.4

Definition of a mass layoff To define a mass layoff, we follow Davis and Von Wachter

(2011) and identify establishments with at least 50 workers that contracted their monthly

employment by at least 30% and which did not recover in the following 12 months. We define

a recovery as a firm which went back to its initial size (or above) within the following 12

months. Given this definition, the descriptive statistics of firms and workers impacted by a

mass layoff are reported in Table J10.
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Table J10: Mass Layoffs: Descriptive Statistics

Number of firms 856

Number of displaced workers
32,620

who had not adopted SINPE when fired

Number of displaced workers
2,585

who had adopted SINPE when fired

Average firm size 529 (2147)

Average monthly wage pre-layoff, laid-off workers $504 ($623)
Average monthly wage pre-layoff, all workers $663 ($487)

Notes: Standard deviations for mean variables are reported in parenthesis. We consider layoffs
that reduce in 30 workers or more the size of firms with at least 50 workers, and limit the analysis
to workers with a period of unemployment of 6 months or less. Wages were calculated based on an
exchange rate of 634 colones per dollar and the last month in which workers were employed. We
include mass layoffs which occurred between May 2015, when the technology was introduced, and
December 2021. The last row includes the average monthly wage pre-layoff for all workers who
were employed at those firms at the time of the mass layoff.

Definition of variables We construct several variables that are used in equation (44). We

now provide more details on each of them.

• Adopti equals one if individual i adopted SINPE within 6 months after arriving to her

new firm, and zero otherwise. This variable is only computed for individuals who found

a job within 6 months of being fired. Results are robust to considering shorter unem-

ployment spells, including conducting the analysis using only job-to-job transitions.

• ∆N coworkers
i is the change between the share of coworkers who had adopted at the old

and the new employer. We compute this variable by calculating the difference between

(i) the share of adopters at the old firm on the last month in which the individual was

employed and (ii) the share of adopters at the new firm in month i, and considering

only months i after the individual was hired at the new firm.

• ∆ lnwagei corresponds with the change in the average wage (in logs) across 6 months

before the layoff and after the rehiring.

• date hiredi controls for the month in which individual i was hired by the new firm.

• ∆Covidi controls for the change in the cumulative COVID-19 cases (transformed using

the inverse hyperbolic sine function) in the individual’s neighborhood across the 6
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months before the layoff and after the rehiring. This change is zero for pre-pandemic

years, thus, this variable is introduced using an inverse hyperbolic sine transformation,

as opposed to a logarithm.

The regression described in equation (45) relies on the same variables that we described

above, but also includes two additional ones, which we now describe.

• ∆ ln ξ̃i refers to the change in monthly intensity with which individual i used SINPE

within 6 months after arriving to her new firm compared with 6 months before being

fired. We only compute this variable for workers who had adopted SINPE more than

6 months before being fired, in order to attenuate any effect coming from a “learning

curve.” We transform ξ̃i using the inverse hyperbolic sine function, as zeros are common

in the monthly data. Note that this inflates coefficients, particularly, for large values

of intensity, which are likely to appear when the left-hand-side variable describes the

total value (as opposed to the number) of transactions.

• cohorti controls for the month when individual i adopted SINPE. We include this

variable to attenuate any effect coming from learning how to better use the app.
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