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1 Introduction

We study the diffusion of a new technology in an economy characterized by strategic comple-

mentarities. These complementarities occur because the benefits that agents derive from the

technology increase with the number of users –a phenomenon long recognized in the applied

literature on technology diffusion (see Griliches (1957); Mansfield (1961)). Progress in this

research area is hindered by the challenges that arise when modeling adoption dynamically

–a large state space, non-linear decisions, multiple equilibria–, and by the lack of detailed

data on technology diffusion. We develop a new tractable model of technology adoption and

apply it to the diffusion of a new payment app, SINPE, a digital application created by the

Central Bank of Costa Rica that allows instantaneous P2P transfers between bank account

holders in the network. By its nature, the usefulness on this app depends on others joining

the network. We aim to quantify the value of this complementarity using granular data from

SINPE and other sources.1 We use the model to discuss equilibrium existence, multiplicity

of equilibrium paths, multiplicity of stationary equilibria, and the local stability of station-

ary equilibria (see e.g., Matsuyama (1991)). We characterize the planner’s problem and its

implementation through subsidies, and use a calibrated version of the model to analyze the

optimal policy.

The model assumes that the benefits of the technology at time t depend on the number

of agents who have adopted it, N(t), and on an idiosyncratic persistent random component,

x(t). In particular, we assume that the flow benefit of the app is proportional to the product

between these variables, x(t)N(t), so that an agent is more likely to adopt if her private

needs for it are high (a high x) and/or when more agents use the app (higher N). A

single parameter, controlling the intensity of this interaction effect, measures the strength of

the strategic complementarities. A high value of x also implies that an agent will use the

technology more intensively, a feature that we leverage when calibrating the model to the

data where we observe both adoption as well as the intensity of usage. Adoption entails a

fixed (once and for all) cost and agents choose when to adopt taking the aggregate path of

adoption as given. We show that when the idiosyncratic benefits are random the equilibrium

features gradual adoption through a simple mechanism: agents wait for others to adopt.2

1More precisely, the app is called “SINPE Móvil,” although throughout we will be referring to it only as
“SINPE,” which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish).
The app was launched in May 2015 and over 60% of the adult population used it in 2021, with about 10% of
the country’s GDP transacted via SINPE. See Björkegren (2018) for a related network-goods analysis using
data on mobile phones adoption in Rwanda.

2We also analyzed a model where x is heterogeneous across agents but fixed through time. This model
features no interesting dynamics: agents with a sufficiently high x immediately adopt, and all others do not.
It is not a model of gradual diffusion, but one of “jumps.” Instead, the stochastic model features gradual
adoption given the option value of waiting for a high draw of the idiosyncratic benefit. The SINPE technology

1



The optimal adoption rule is given by a time-dependent threshold value, denoted by x̄(t),

such that adoption is optimal if x(t) > x̄(t). We assume that the economy starts with

an (arbitrary) measure of agents endowed with the technology, which serves as the initial

condition of the equilibrium. Aggregation of the adoption decisions across agents yields a

path for the fraction of agents that use the technology at each time t, N(t). Given the initial

and terminal conditions, the equilibrium has a classic fixed point structure: the optimal

decision path (x̄) depends on the aggregate path (N), and vice-versa.

The model yields three main results, each summarized by a theorem. We show that the

optimal adoption rule for each agent, summarized by the threshold path x̄, is a decreasing

functional of the path of adoption N . The strength of this effect depends on the parameter

that controls the strategic complementarity. Likewise, we show that the adoption path N is a

decreasing functional of the path x̄, for any initial distribution of adopters. An equilibrium is

a fixed point given by the composition of these two functionals. The first theorem establishes

the existence, and possibly the multiplicity, of dynamic equilibria. These equilibria form a

non empty lattice, i.e., they are ordered so that there is a “largest one”, NH , and a “smallest”

one, NL. The adoption path of the largest equilibrium is above the smallest one at every

point in time, NH(t) > NL(t), for all t. More equilibria may exist and are bracketed between

these ones (the paths of different equilibria do not cross). We establish these results using the

monotone comparative statics logic by Milgrom and Shannon (1994), and Tarski’s fixed point

theorem. We show that there is a critical mass of adopters N0 such that, if the initial measure

of adopters is below N0, then there is an equilibrium where no one will adopt eventually. We

also study stationary equilibria, i.e. equilibria where N is constant through time, and show

that, besides the stationary equilibrium with no adoption, the model has two additional

interior stationary equilibria, which we label low- and high-adoption.

The second theorem characterizes the stability of the stationary equilibria by means

of a perturbation analysis with respect to the initial condition, assumed to be one of the

two interior equilibria. The analysis is non-trivial because it involves the linearization of

an infinite dimensional system: the distribution of adopters. We handle the problem by

leveraging techniques from the Mean Field Game (MFG) literature (e.g., Alvarez et al.,

2023a; Auclert et al., 2022; Bilal, 2023), which determines the local stability by inspecting

the eigenvalues of a linear operator. One novelty compared to the MFG problem studied

in Alvarez et al. (2023a) is the possibility of multiple stationary equilibria. The stability

condition then depends on the particular equilibrium that is chosen. We find that the high-

adoption equilibrium is locally stable, while the low-adoption is unstable, a feature that leads

us to discard it from the analysis.

was indeed adopted gradually, as shown in Figure 7.
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We show how to characterize efficient allocations, taking into account the dynamics across

the entire network. Equilibria are socially inefficient because agents do not internalize the

fact that when they adopt they benefit all agents who already have the technology. The third

theorem shows how to decentralize the planner’s solution using a simple tool: a time-varying

subsidy paid to those that use the technology.

We then leverage a comprehensive set of data collected since SINPE was created to analyze

the dynamics of adoption and usage, to document the presence of strategic complementarities,

and to discipline the parametrization of the model. Our baseline analysis links data on users

–both receivers and senders– within their employer-employee network.3 We identify the

presence of strategic complementarities using arguably exogenous variations in the network

size due to mass layoffs. We document a causal relation between the share of agents who

have adopted (N) and usage of the app, both at the extensive margin as well as at the

intensive margin: a sudden decrease of the network size lowers the probability of adoption

and lowers the intensity of use.4 This effect persists across a battery of ways to define usage

and networks. It also emerges after using a leave-one-out instrument and following a balanced

panel of adopters to address concerns regarding selection.

We match the theory with the data in a quantitative analysis where we calibrate the

model using key moments from the data with the objective to compute the optimal adoption

subsidy. To capture the initial gradual diffusion of the technology, observed in each network,

we supplement the model with a layer of slow-information diffusion following the seminal

work of Bass (1969). The strength of the strategic complementarities is chosen using the

information retrieved from the mass layoffs described above. The calibrated model shows that

the optimal subsidy speeds up adoption by the agents and ultimately pushes the economy

towards universal adoption of the payment app.

Related Literature. Several recent studies are related to our paper. Benhabib et al.

(2021) model firms that can endogenously innovate and adopt a technology. They analyze

the effect of these choices on productivity and balanced growth, but without conducting an

analysis of the transition between stationary distributions; likewise, Buera et al. (2021) study

policies that can coordinate technology adoption across firms. A closely related contribution

is Crouzet et al. (2023), who develop a model with a unique equilibrium where the rate of

3Individual-to-individual transactions account for over 95% of all transactions, regardless of the time
period considered. We find that 44% of all SINPE transactions occur between coworkers. Family networks
and spatial “neighborhood” networks are also considered for robustness.

4Namely, we focus on networks of coworkers and examine the effect of network changes on the intensity
of the app’s usage and its adoption for workers displaced by a mass layoff. By analyzing the usage intensity
of workers who had already adopted the app prior to being displaced, we are able to isolate the influence of
strategic complementarities rather than the effects of learning.
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adoption of electronic payment by retailers increases following an aggregate shock. Their

analysis is motivated by 2016 Indian Demonetization, and exploits the variation in the inten-

sity with which firms in Indian districts were exposed to the shock to examine the adoption

of retailers. Unlike our model, which has heterogeneous agents and generates dynamics and

gradual adoption endogenously (as agents wait for others to adopt before doing so), their

model features homogeneous agents and a sluggish adjustment à la Calvo (1983), generating

gradual adoption through this imposed friction. Moreover, the heterogeneity in our model

allows us to accommodate, not only aggregate shocks when we analyze transition dynamics

in closed-form, but also dynamics after shocks that target particular types of agents; for

instance, we compare the propagation after “giving the app” to people with high vs. low

idiosyncratic benefits, which in turn can be mapped to observables like wages and skills.

The paper also deals with technical issues of multiplicity and stability that have plagued

the economic geography literature. Recent papers have developed algorithms that exploit

the super- or sub-modularity of the objective function based on Tarski’s theorem (Jia, 2008;

Arkolakis et al., 2023). Our approach also leverages the monotonicity of our problem, but

does so for an analysis of dynamic stability as a criterion to select an equilibrium and develops

the planning problem to study efficiency.

The paper is organized as follows. The next section presents the model, Section 3 discusses

the different types of equilibria that exist. Section 4 uses a perturbation method to inspect

the stability of the stationary equilibria. Section 5 discusses the planning problem. Section 6

presents the data and documents the non-negligible role of strategic complementarities in the

use and adoption of SINPE. A calibrated version of the model is used in Section 7 to discuss

the optimal subsidy for the efficient adoption of SINPE.

2 The Model

This section presents a tractable model of technology adoption within a “network” of agents.

The model fits alternative notions of network, later discussed in the empirical analysis, such

as a group of co-workers, households living in the same neighborhood, or a (broad) notion

of family members. The network is populated by a continuum of agents who differ in the

potential benefits from adopting the technology. Let N(t) ∈ [0, 1] be the fraction of agents

who have adopted at time t ∈ [0, T ]. The flow benefit at time t for an agent who has already

adopted the technology is

x(θ0 + θnN(t)) (1)

where θ0, θn > 0 are parameters. x is stochastic process, independent across agents, with

variance σ2 per unit of time, no drift, and reflecting barriers at x = 0 and x = U , so that
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dx = σdW where W is a standardized Brownian motion. Later on –see equation (29)–

we allow agents to choose the intensity of technology use in each period, in which case

equation (1) gives the optimal value of such problem. We let c > 0 be the fixed cost of

adopting the technology and r > 0 be the time discount rate. With probability ν per unit

of time agents die, so that agents discount time at rate ρ ≡ r + ν. Dead agents are replaced

by newborns without the technology and an x drawn from the invariant density f(x) = 1/U

for x ∈ [0, U ], which is uniform because of the reflecting barriers assumption.

2.1 Individual Decisions, Aggregation, Equilibrium

We next describe the agent’s optimal decision as a function of the whole path of aggregate

adoption N : [0, T ] → [0, 1], discuss how to aggregate individual decision to compute the

aggregate path of adoption, and define the equilibrium.

Let a(x, t) be the value function of an agent who has adopted the technology and has

state x at time t:

a(x, t) = E
[ ∫ ∞

t

e−ρ(s−t) (θ0 + θnN(s))x(s)ds
∣∣∣ x(t) = x

]
(2)

for all t ≥ 0 and x ∈ [0, U ]. Note that the agent takes the whole path N as given.

For technical motives, we assume that the path of N(s) is constant at some given value

N̄ for s > T where T is given. All our results hold for finite but arbitrarily large T , and some

of the results hold for T → ∞. Later on, we will focus on the case when N̄ is the adoption

rate corresponding to an invariant distribution for the model with T = ∞.

An agent with state x, who has not yet adopted at time t, has a value function v(x, t)

that solves the stopping-time problem

v(x, t) = max
t≤τ

E
[
e−ρ(τ−t) (a (x (τ) , τ)− c)

∣∣∣x(t) = x
]
, (3)

where τ denotes the time of the adoption and depends only on the information generated by

the process for x and on calendar time t (the latter because of the dynamics of N(t)).

Discretized Model. For future use we introduce a discretized version of the model defined

by positive integers I, J that determine the step size for t given by ∆t =
T
J−1

and for x given

by ∆x = U
I−1

. Thus t ∈ {∆t(j − 1) : j = 1, . . . , J} and x(t) ∈ {∆x(i − 1) : i = 1, . . . , I}.
The reflecting Brownian Motion, Poisson processes, and discounting are changed accordingly,

following the scheme used in finite difference approximations.5 Next we state a preliminary

5See Definition 3 in Appendix A for a detailed definition.
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result to establish that we can represent the optimal adoption rule at time t as a threshold

rule, x̄(t).

Lemma 1. Fix a path N and a time t ∈ [0, T ]. If it is optimal to adopt at (x1, t), then it is

also optimal to adopt at (x2, t) where x2 > x1. This holds for the continuous time as well as

for the discretized model.

Let us denote aT (x) = a(x, T ) and vT (x) = v(x, T ), where both functions depend only

on the constant N̄ , and concentrate on the time interval [0, T ]. In this interval we write the

optimal decision rule as a function of the path N : [0, T ] → [0, 1], and of the functions aT

and vT . Indeed, the optimal decision depends on the difference between aT and vT which we

denote by DT ≡ aT − vT , further discussed in Section 2.2. We denote the optimal threshold

as x̄ = X (N ;DT ), so that x̄ : [0, T ] → [0, U ].

Aggregation. Given the individual decision rule we can compute the implied path for

the fraction of adopters, N . We start by defining the probability that an agent at s with

state x(s) = x survives until time t, while the value of her state remains below x̄ during this

period:

P (x, s, t; x̄) = Pr
[
x(ι) ≤ x̄(ι), for all ι ∈ [s, t]

∣∣∣ x(s) = x
]
e−ν(t−s). (4)

For an agent who at time s has x ≤ x̄(s), the value of P (x, s, t; x̄) gives the probability that

the agent will survive up to t without adopting. Letm0(x) be the density of the agents at time

t = 0 without the technology. Given the assumption about x, we require 0 ≤ m(x) ≤ 1/U

for all x ∈ [0, U ]. The fraction of agents who have adopted the technology at time t is

N(t) = 1−
∫ U

0

P (x, 0, t; x̄)m0(x)dx−
∫ t

0

ν

[∫ U

0

P (x, s, t; x̄)
1

U
dx

]
ds. (5)

The second term on the right hand side is the fraction of agents who did not have the

technology at time 0 and survived until time t without adopting. The third term considers

the cohorts of agents that are born between 0 and t, and for each of these cohorts computes

the fraction that survived without adopting up to t. We note that an equivalent version of

equation (5) holds in the discretized version of the model. We let N (x̄;m0) be the path of

N as a function of x̄ (the path of the adoption threshold) and of the initial condition m0.

Equilibrium. The equilibrium is given by the fixed point between the forward looking

optimal adoption decision, encoded in X , and the backward looking aggregation, encoded
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in N . To emphasize the forward looking nature of X , note that it depends on the terminal

value function DT ≡ aT − vT . To emphasize the backward looking nature of N , note that it

propagates the initial condition m0. We then have the following definition.

Definition 1. Fix an initial conditionm0 and a terminal value functionDT . An equilibrium

{N∗, x̄∗} solves the fixed point:

N∗ = F (N∗;m0, DT ) where F (N ;m0, DT ) ≡ N (X (N ;DT ) ;m0) (6)

and where x̄∗ = X (N∗;DT ).

Note that this is a canonical definition of equilibrium, where the operator F combines the

two operators N and X defined before. This definition holds for both the continuous time

and the discretized version of the model.

2.2 A Recursive Formulation of the Equilibrium

This section derives a recursive representation of the equilibrium that will be useful to study

the local stability of the equilibrium and to study the planning problem.

The functions a(x, t) and v(x, t), and the optimal policy x̄(t), have a recursive repre-

sentation in terms of Hamilton-Jacobi-Bellman (HJB) partial differential equations.6 The

information encoded in the equations can be summarized by the value function D(x, t) ≡
a(x, t)− v(x, t), which satisfies:

ρD(x, t) = min
{
ρc , x(θ0 + θnN(t)) +

σ2

2
Dxx(x, t) +Dt(x, t)

}
(7)

for all x ∈ [0, U ], t ∈ [0, T ] and terminal condition D(x, T ) ≡ DT (x) = aT (x)− vT (x).

We interpret the value function D(x, t) as the opportunity cost of waiting to adopt. To

see why, note that a(x, t) − c is the net value of adopting immediately while v(x, t) is the

net optimal value, that may entail adopting in the future, see equation (2) and equation (3).

From here, it follows that

D(x, t) = E
[ ∫ τ

t

e−ρ(s−t) (θ0 + θnN(s))x(s)ds+ e−ρ(τ−t)c
∣∣∣ x(t) = x

]
. (8)

Optimality requires that D(x, t) ≤ c, which implies the value matching condition at the

6We derive these equations and their boundaries in Appendix F.
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barrier. We are looking for a classical solution that satisfies:

ρD(x, t) = x(θ0 + θnN(t)) +
σ2

2
Dxx(x, t) +Dt(x, t) (9)

for all x ∈ [0, x̄(t)] and t ∈ [0, T ] with boundary conditions:

D(x̄(t), t) = c Value Matching

Dx(x̄(t), t) = 0 Smooth Pasting (10)

Dx(0, t) = 0 Reflecting

If the solution is regular it also features smooth pasting. Finally, since x = 0 is a reflecting

barrier, the value function has a zero derivative at that point.

Let m(x, t) denote the density of the agents with x that have not adopted at t. The law

of motion of m for all t ≥ 0 is:

mt(x, t) = ν

(
1

U
−m(x, t)

)
+
σ2

2
mxx(x, t) if 0 ≤ x ≤ x̄(t)

m(x, t) = 0 for x ∈ [x̄(t), U ] (11)

mx(0, t) = 0

and initial condition m0(x) = m(x, 0) for all x ∈ (0, U). The p.d.e. is the standard Kol-

mogorov forward equation (KFE). The density of non-adopters is zero to the right of x̄(t),

since this is an exit point. The last boundary condition is obtained from our assumption that

x reflects at x = 0. The fraction of agents that have adopted the technology is thus given by

N(t) = 1−
∫ x̄(t)

0

m(x, t)dx. (12)

We use these equations to provide an equilibrium definition, equivalent to Definition 1, which

emphasizes the dynamic nature of the equilibrium.

Definition 2. An equilibrium is given by the functions {D,m, x̄, N} satisfying the coupled

p.d.e.’s for D and m in (9) and (11), and the boundary conditions in (10), (11), and (12).

We note that this system of p.d.e.’s is involved for two reasons. First, the equations are

coupled through x̄ and N . Second, the equations feature a time-varying free boundary, which

is known to be non-trivial.
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3 Equilibria

In this section we establish equilibrium existence, the possibility of multiple equilibria and

illustrate an iterative procedure to compute the equilibrium numerically. We also discuss

equilibria with no adoption, i.e. situations in which given an initial condition m0, no one will

use the technology eventually. We conclude by discussing stationary equilibria.

3.1 Monotonicity and Existence of Equilibrium

The next lemma shows that the function X , giving the path of the optimal threshold x̄ as

a function of the path N , is monotone decreasing. Thus, an agent facing a higher path of

adoption will choose to adopt earlier. Moreover, the lemma shows that an agent facing larger

values of θ0 and/or θn, will also adopt earlier.

Lemma 2. Fix the terminal value function DT = aT − vT and θn ≥ 0. Let x̄ be the

threshold path implied by N(t). Consider two paths such that N ′(t) ≥ N(t) for all t ∈ [0, T ],

then x̄′(t) ≤ x̄(t) for all t ∈ [0, T ]. Moreover, let θ ≡ (θ0, θn) with the corresponding optimal

threshold path x̄. If θ′ ≥ θ then x̄′(t) ≤ x̄(t) for all t ∈ [0, T ].

Lemma 2 also holds in the discretized version of the model.7 The proof holds as we verify

the conditions to use Topkis (1978). Thus, once we reformulate the problem in terms of

stopping times, we can apply the monotone comparative statics logic developed by Milgrom

and Shannon (1994) to characterize the policy function.

Next, we show that given the initial condition m0(x), if the path x̄(t) ≤ x̄′(t) then

N ′(t) ≤ N(t) for all t. We need to show that the fraction of non-adopters is decreasing in

x̄(t). This implies that N is monotone decreasing.

Lemma 3. Fixm0 and consider two paths for the thresholds x̄ and x̄′, satisfying x̄′(t) ≥ x̄(t)

for all t ∈ [0, T ]. Let N ′ = N (x̄′;m0) and N = N (x̄;m0). Then N ′(t) ≤ N(t) for all

t ∈ [0, T ]. Moreover, fix a threshold path x̄, and consider two initial measures with m′
0(x) ≥

m0(x) for all x ∈ [0, U ], then N ′ = N (x̄;m′
0) and N = N (x̄;m0). Then N

′(t) ≤ N(t) for all

t ∈ [0, T ].

The next theorem uses the monotonicity of X and N , proven in Lemma 2 and Lemma 3, to

establish through equation (6) that F is monotone. This allows us to use Tarski’s theorem

and establish the existence, and possibly the multiplicity, of equilibria. For technical rea-

sons, the theorem applies to the finite-horizon discretized-version of the model introduced in

7For instance, it holds for a finite difference approximation, which we use for some computations, and
which converges to the continuous-time version.
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Section 2.1.8

Theorem 1. Consider a finite horizon, discrete time - discrete state version of the model

and θn ≥ 0. Fix an initial condition m0 ∈ RI
+ and a terminal value function DT ∈ RI

+.

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest

equilibrium, {x̄L, NL}, and a largest one, {x̄H , NH}, and any other equilibrium path {x̄, N}
satisfies NL ≤ N ≤ NH and x̄L ≥ x̄ ≥ x̄H for all t ∈ [0, T ].

(ii) Let θ′ ≥ θ, and m′
0 ≤ m0 for all x ∈ [0, U ]. Consider the equilibrium {x̄′, N ′} with the

largest N ′ corresponding to {θ′,m′
0} and the equilibrium {x̄, N} with largest N corresponding

to {θ,m0}. Then x̄′ ≤ x̄ and N ′ ≥ N for all t ∈ [0, T ].

The first statement of the theorem establishes the existence of the equilibrium for the finite

horizon - discrete time version of the model. The result holds for an arbitrary small length of

the time period, and for an arbitrarily large finite horizon, T . An important consequence of

the theorem is that the equilibrium set, given the initial distribution of non-adopters m0 and

the terminal valuation DT ≡ aT − vT , is a lattice. We can compute the value of the extreme

equilibria (i.e., the smallest and the largest) by iterating on Nk+1 = F(Nk;DT ,m0) for

k = 0, 1, . . . , starting from N0(t) = 1 or from N0(t) = 0, for all t. The theorem ensures that

the limit converges to a fixed point. If the two sequences converge to the same limit, then the

equilibrium is unique. The second statement of the theorem focuses on the “high-adoption”

equilibrium and establishes a useful comparative statics result: considering a larger θ, or a

“smaller” m0 (more agents endowed with the app at time zero), leads to more adoption.

3.2 No-Adoption Equilibrium

The setup may feature an equilibrium with zero adoption, i.e., x̄(t) = U for all t. For

simplicity we focus on the case where T = ∞. This case is particularly easy because agents’

decisions are in a corner. We characterize the basin of attraction for such equilibrium, i.e.,

we find a threshold for the number of adopters N , such that a no-adoption equilibrium exists

if and only if at t = 0 the mass of agents with the technology is smaller than N .

Proposition 1. A no-adoption equilibrium with x̄(t) = U and N(t) = N(0)e−νt for all

t ≥ 0 exists if and only if 1−
∫ U
0
m0(x)dx ≤ N , where

ρc

U
= θ0 [1 + g(ηU)] +N

ρθn
ρ+ ν

[1 + g(η′U)] (13)

η ≡
√

2ρ

σ2
, η′ ≡

√
2(ρ+ ν)

σ2
and g(y) ≡ csch(y)− coth(y)

y
∈ (−1

2
, 0) . (14)

8See Definition 3 in Appendix A. The reason is the completeness of the lattice in which F is defined.
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Note that N > 0 if and only if ρc
U
> θ0 [1 + g(ηU)]. Moreover, if N > 0 we have:

(i) N is an increasing function of σ, satisfying

ρ+ ν

ρθn

(ρc
U

− θ0

)
≤ N ≤ ρ+ ν

ρθn

(
2
ρc

U
− θ0

)
, (15)

where the lower (upper) boundary is reached as σ → 0 (σ → ∞).

(ii) N is a decreasing function of θn.

An immediate corollary of this proposition is that m0(x) = 1/U is an invariant distribution

provided that N ≥ 0, i.e., if the economy starts with no adoption, then it may remain in

that equilibrium forever (no adoption is a stationary equilibrium). That N > 0 requires θ0

to be small is easily understood: if θ0 is large agents with a high x will find it profitable to

adopt regardless of what the others choose. Likewise, that N > 0 is increasing in σ implies

that if agents are hit by larges shocks the no-adoption equilibrium is more likely to occur.

This result follows because, for a given U , a large σ makes the reversion to the mean faster,

lowering the benefit of adoption. Finally, if θn is large then it is more profitable to coordinate

on high N and the basin of attraction of the no-adoption equilibrium is smaller.

3.3 Stationary Equilibria

In this section we let T = ∞ and analyze the stationary equilibria of the model. We look

for an initial condition m0, such that the distribution is invariant, so that both x̄(t) = x̄ss

and N(t) = Nss are constant through time. We will show that convergence to the stationary

equilibrium must be gradual, i.e., that it is not possible to “jump” to the equilibrium given

a generic initial condition in the model where σ > 0.9

A stationary equilibrium is given by two constant values of Nss and x̄ss that solve the

time-invariant version of the partial differential equations presented in Section 2.2. From a

mathematical point of view the equilibrium is a fixed point. Given Nss, D̃ and x̄ss solve:

ρD̃(x) = x(θ0 + θnNss) +
σ2

2
D̃xx(x) if x ∈ [0, x̄ss] Value of Adoption

D̃x(0) = 0 Reflecting

D̃(x̄ss) = c Value Matching

D̃x(x̄ss) = 0 Smooth Pasting .

9An immediate jump to the stationary equilibrium might instead occur in a model with σ = 0 (See the
Online appendix J of Alvarez et al. (2023b)).
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Conversely, given x̄ss, the density m̃ solves

0 = −νm̃(x) + ν
1

U
+
σ2

2
m̃xx(x) KFE if x ≤ x̄ss

m̃(x̄ss) = 0 and m̃x(0) = 0 Exit and Reflecting .

Notice that the (stationary) equilibrium m̃(x) and x̄ss solve the fixed point

Nss = 1−
∫ x̄ss

0

m̃(s)dx.

We begin by solving for D̃(x) and x̄ss given a value for Nss (see Appendix B.1 for details).

Using the solution for D̃ we can solve for Xss : [0, 1] → [0, U ], a function that gives the

optimal stationary threshold as a function of a given Nss. The monotonicity properties of

the function D̃ on the parameters Nss, θn, c and θ0 give the following characterization of the

threshold Xss.

Lemma 4. The function Xss is decreasing inNss, strictly so at the points where 0 < x̄ss < U .

Fixing a value of Nss, the function Xss is strictly increasing in c, strictly so at the points

where 0 < x̄ss < U . Fixing a value of Nss, the function Xss is strictly decreasing in θ0

and θn at the points where 0 < x̄ss < U . Moreover, we have the following expansion:

Xss(Nss) =
ρc

θ0+θnNss
+ σ√

2ρ
+ o(σ).

Since the function Xss(Nss) is decreasing in Nss, it has an inverse, X−1
ss , given by:

X−1
ss (x̄ss) =

1

θn

 ρc(
x̄ss + Ā1eηx̄ss + Ā2e−ηx̄ss

)
− (1+η(Ā1eηx̄ss−Ā2e−ηx̄ss))(eηx̄ss+e−ηx̄ss )

η(eηx̄−e−ηx̄ss )

− θ0

 where

Ā1 ≡
1

η

(
1− e−ηU

)
(e−ηU − eηU)

, Ā2 ≡
1

η

(
1− eηU

)
(e−ηU − eηU)

and η ≡
√

2ρ/σ2. (16)

Note that, from the expansion given in Lemma 4, fixing x̄ss, then X−1
ss (x̄ss) is increasing in

σ in a neighborhood of σ = 0. Provided that θn > 0 we have

X−1
ss (x̄ss) ≈

1

θn

(
cρ

x̄ss − σ/
√
2ρ

− θ0

)
.

Next we can solve the Kolmogorov forward equation for m̃(x), given a barrier x̄ss subject

to an exit point and to the boundary conditions coming from the reflecting barriers. We

denote the corresponding value of the fraction that have adopted as Nss(x̄ss). Solving this

12



equation we obtain

Nss(x̄ss) = 1− x̄ss
U

+
tanh (γx̄ss)

Uγ
where γ ≡

√
2ν/σ2. (17)

Inspection of equation (17) yields the following characterization of Nss.

Lemma 5. Fix γ > 0, then Nss(x̄) is strictly decreasing in x̄ss. Fixing x̄ > 0, then Nss is

strictly increasing in γ, and hence strictly decreasing in σ. Moreover, we have the expansion:

Nss(x̄) = 1− x̄ss
U

+ σ
U
√
2ν

+ o(σ).

As is intuitive, the value of Nss(x̄ss) is decreasing in the level of the barrier x̄. The system

given by equation (16) and equation (17) determines x̄ss and Nss. In particular, a stationary

equilibrum is described by the pair {x̄ss, Nss}, which solves

Nss ≡ Nss(x̄ss) = X−1
ss (x̄ss).

Next, we summarize the behavior of the stationary equilibrium for small values of σ. We

label the stationary equilibrium with superscripts {H,L} to hint at the associated High or

Low level of adoption, so that x̄H < x̄L.

Proposition 2. Assume that ν > 0 and that the parameters θ0, θn, c and ρ are such

that there are two interior stationary equilibria in the deterministic case of σ = 0, and label

them as x̄Hss < x̄Lss. Then, (i) there exists a σ̄ > 0 such that for all σ ∈ (0, σ̄) there are two

interior stationary equilibria with x̄Hss < x̄Lss. (ii) The threshold for each stationary equilibria

is continuous with respect to σ at σ = 0. (iii) The sign of the comparative static differs

across stationary equilibria, with

∂x̄Hss
∂c

> 0 >
∂x̄Lss
∂c

and
∂x̄Lss
∂θ0

> 0 >
∂x̄Hss
∂θ0

.

The proposition shows that the high adoption stationary equilibrium behaves in an intuitive

way, with more adoption (a lower x̄Hss) associated with a smaller adoption cost (c), or with

a larger intrinsic value of the technology (θ0). The comparative statics for the low adoption

stationary state are just the opposite: adoption is higher as the adoption cost increases.

The latter (unrealistic) feature, and the unstable nature of the low adoption equilibrium (see

the next section), will lead us to focus on the high adoption equilibrium in our quantitative

analysis.
A notable feature of the stationary distribution of non-adopters is that in the invariant

equilibrium there are agents with low benefits, namely with x(t) < x̄ss, who have the tech-

nology (provided σ > 0). These are agents who adopted the technology in the past (for some

13



Figure 1: Stochastic Stationary Equilibria: Density of non-adopters: m̃(x)

High and Low Adoption Stationary Equilibria

t′ < t when x(t′) > x̄(t′), and whose x decreased over time. As a result, m(x) < 1/U when

σ > 0, and the density of non-adopters below x̄ss is not uniform. Given that the density

takes time to adjust, the stochastic model features dynamics in the adoption of a new tech-

nology: it takes time to change from the initial distribution to the invariant distribution, as

agents adopt when x(t) > x̄(t) and it takes times for the x′s to crawl back below the sta-

tionary threshold. Figure 1 shows the densities of the invariant distribution of the high- and

low-adoption equilibria, illustrating that both equilibria have adopters below the (respective)

stationary threshold.

4 Stability of Stationary Equilibria

In this section we analyze the local stability of the stationary equilibria. We explore the

question by perturbing the stationary distribution of adopters, using techniques from the

Mean Field Game literature developed in Alvarez, Lippi and Souganidis (2023a). For this

purpose, we use the equilibrium Definition 2. This dynamical system is infinite-dimensional

because the state, at every time t, is given by the entire density m(x, t).

The objective is to consider the stationary equilibrium m̃ and ask if, starting from a

condition m0 close to m̃, the economy converges to m̃. As the system is infinite-dimensional,
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many “deviations” are possible. Any initial condition can be described by m0(x) = m̃(x) +

ϵω(x), for some ω satisfying
∫ U
0
ω(x)dx = 0. The sense in which the analysis is local is that

we differentiate the system with respect to ϵ and evaluate it at ϵ = 0. The alert reader will

notice that the local dynamics of a system in Rq are encoded in a q×q matrix. The analogous

infinite dimensional object is a linear operator that will be presented below.

We begin the analysis with the approximation of x̄(t) = X (N)(t). That is, we study

how perturbing the aggregate path of adoption N leads to adjusting the decision rule for

threshold path x̄. To do this, we take the directional derivative (Gateaux) with respect to

an arbitrary perturbation n of a constant path N . In particular, we consider paths defined

by N(t) = Nss + ϵ n(t) around the stationary value Nss. We denote this Gateaux derivative

by ȳ, so that x̄(t) ≈ x̄ss + ϵȳ(t).

Lemma 6. Fix a stationary equilibrium with interior x̄ss, and its corresponding Nss. Let

DT be equal to the stationary value function D̃ corresponding to that stationary equilibrium.

Let n : [0, T ] → R be an arbitrary perturbation. Then

ȳ(t) ≡ lim
ϵ↓0

X (Nss + ϵn; D̃)(t)−X (Nss; D̃)(t)

ϵ

=
θn

D̃xx(x̄ss)

∫ T

t

G(τ − t)n(τ)dτ, (18)

where

G(s) ≡
∞∑
j=0

cje
−ψjs ≥ 0 , ψj ≡ ρ+

σ2

2

(
π(1

2
+ j)

x̄ss

)2

and cj ≡ 2

(
1− cos(πj)

π(j + 1
2
)

)
,

where D̃xx(x̄ss) < 0 is the second derivative of the stationary value function:

D̃xx(x̄ss) =
ρc− x̄ss [θ0 + θnNss]

σ2/2
, Nss = 1− x̄ss

U
+

tanh (γx̄ss)

γU
and γ =

√
2ν

σ2
.

Thus, we can write x̄(t) = x̄ss+ ϵȳ(t)+ o(ϵ). Note that G is positive and Dxx is negative,

so the effect of the future path on the current value is negative, which is consistent with the

property that X is decreasing. Also note that it is proportional to θn, so if θn = 0, then the

threshold will be constant. Thus, the approximation of x̄(t) depends on the perturbation

of the path of N from t to T , given by n(s) for s = [t, T ]. The proof of the proposition

is obtained by jointly differentiating with respect to ϵ the system defined by D and x̄ in

equation (9) and equation (10). This yields a new p.d.e., and new boundary conditions. The

expression for ȳ is obtained once we solve this new p.d.e., see the proof in Appendix C.1.

Now we turn to the perturbation for the fraction of the adopters, as a function of the
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threshold path and of a perturbation of the initial condition. We approximate N(t) =

N (x̄,m0)(t) by taking the directional derivative (Gateaux) with respect to an arbitrary per-

turbation ȳ of a constant path x̄ and a perturbation ω on the stationary density m̃. In

particular, we consider paths defined by x̄(t) = x̄ss + ϵ ȳ(t) around the stationary threshold

xss, and m0(x) = m̃(x) + ϵ ω(x). We will denote this Gateaux derivative by n.

Lemma 7. Fix the interior threshold x̄ss of a stationary equilibrium and its corresponding

Nss, and let m̃ be the corresponding invariant distribution of non-adopters. Let ω : [0, x̄ss] →
R be an arbitrary perturbation to the distribution, and let ȳ : [0, T ] → R be an arbitrary

perturbation of the threshold. Then

n(t) ≡ lim
ϵ↓0

N (x̄ss + ϵȳ; m̃+ ϵw)(t)−N (x̄ss; m̃)(t)

ϵ

= n0(ω)(t) +
m̃x(x̄ss)σ

2

x̄ss

∫ t

0

J(t− τ)ȳ(τ)dτ (19)

where
J(s) =

∞∑
j=0

e−µjs with µj = ν +
1

2
σ2

(
π(1

2
+ j)

x̄ss

)2

(20)

n0(ω)(t) ≡ −
∞∑
j=0

x̄ss
π(1

2
+ j)

⟨φj, ω⟩
⟨φj, φj⟩

e−µjt, (21)

φj(x) ≡ sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss] (22)

⟨φj, ω⟩
⟨φj, φj⟩

=
2

x̄ss

∫ x̄ss

0

φj(x)ω(x)dx and m̃x(x̄ss) = − γ

U
tanh(γx̄ss).

Thus, we can write N(t) = Nss + ϵn(t) + o(ϵ). This formula encodes the effect of two

perturbations: ω and ȳ. The former is the perturbation on the initial condition m0, whose

effect is in the term n0(ω)(t). We note that n0(ω)(t) is the effect at time t on the path N(t)

triggered by a perturbation of the initial condition keeping the threshold rule x̄ fixed. The

function n0(ω) can be further reinterpreted by considering the limiting case of a perturbation

ω given by a distribution concentrated at x = x̂ ≤ x̄ss, i.e., a Dirac’s delta function as

ω(x) = δx̂(x). In this case,

n0(δx̂)(t) = −
∞∑
j=0

2
sin
((

1
2
+ j
)
π
(
1− x̂

x̄ss

))
(1
2
+ j)π

e−µjt.
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The effect of the perturbation, ȳ, on the path of the threshold, x̄(s), is captured by the second

term in equation (19). This term gives the effect at time t on the path N(t) of a perturbation

of the threshold rule x̄, keeping the initial condition m̃ fixed. Also, consistent with our general

result for N , the effect of the threshold is negative, as J > 0 and m̃x(x̄ss) < 0.

For future reference it is useful to understand the behavior of n0(t) as function of time.

In particular, the rate at which the perturbation ω to the initial distribution converges back

to the stationary distribution, while keeping x̄(t) = x̄ss. This rate is given by the value of

µ0 = ν + σ2

8

(
π
x̄ss

)2
, i.e., the dominant eigenvalue.10

The next step is to use the last two lemmas to derive one equation for the linearized

equilibrium as a function of the perturbed initial distribution m0(x) = m̃(x) + ϵω(x). We

combine equation (18) and equation (19) to arrive to a single linear equation that n(t) must

solve as a function of ω.

Theorem 2. Fix an interior threshold x̄ss for a stationary state, with its corresponding

Nss, and let m̃ be the corresponding invariant distribution of non-adopters. Let m0(x) =

m̃(x) + ϵω(x). Let DT be equal to the value function D̃ corresponding to that stationary

equilibrium. The linearized equilibrium solves

n(t) = n0(ω)(t) + Θ

∫ T

0

K(t, s)n(s)ds, (23)

where n0(ω)(t) is given in Lemma 7 and Θ ≡ m̃x(x̄ss)σ2θn
x̄ssD̃xx(x̄ss)

> 0. The kernel K is given by

K(t, s) =
∞∑
i=0

∞∑
j=0

cje
−µit−ψjs

[
e(µi+ψj)min{t,s} − 1

µi + ψj

]
> 0. (24)

Moreover, LipK ≡ supt
∫
|K(t, s)|ds ≤

(
x̄2ss
σ2

)2
. Furthermore, if ΘLipK < 1 there exists a

unique bounded solution to equation (23) which is the limit of

n =
[
I +ΘK +Θ2K2 + . . .

]
n0(ω) where K(g)(t) ≡

∫ T

0

K(t, s)g(s)ds, (25)

and where Kj+1(g)(t) ≡
∫ T
0
K(t, s)Kj(g)(s) ds for any bounded g : [0, T ] → R.

A few remarks are in order. First, note that K depends on θn as µj, ψj are a function of

x̄ss, which is itself a function of θn. The coefficient Θ depends on θn directly and indirectly

via x̄ss. Hence equation (23) depends on which stationary equilibrium we focus on. Second, if

10The proof is in Appendix C.2 and resembles the one for the previous proposition.
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we discretize time so that t ∈ {∆t(j− 1) : j = 1, . . . , J} for ∆t =
T
J−1

, as done in Section 2.1,

then the operator K is a J ×J matrix with elements K(ti, tj), and n0, n are J × 1 vectors, so

that equation (23) becomes the linear equation n = n0 +ΘK n. Third, the fact that ΘK > 0

implies that the terms ΘK + Θ2K2 + . . . in equation (25) give the amplification over and

above n0, due to the time-varying path of the barrier x̄.

Figure 2: Perturbation of Stationary Equilbria

(a) High Adoption Stat. Eqbm. (b) Low Adoption Stat. Eqbm.

Figure 2 illustrates the stability of the high and low adoption equilibria, respectively, in

Panels (a) and (b). Each panel considers two shocks that displace a small mass of agents away

from the invariant distribution of non-adopters and endows them with the app. The shocks

differ in the direction in which the mass is displaced. The blue line depicts the case where

the app is given to agents with low benefit, namely with x ≈ 0, while the red line considers

a perturbation where the app is given to agents with a high benefit, namely with x ≈ x̄ss.

Two remarks are due. First, the high adoption equilibrium is locally stable, as displayed in

Panel (a): for all shocks considered, the system returns to its invariant distribution. We also

note that the half life of the shock is much shorter when the perturbation assigns the app to

agents with a high benefit (x ≈ x̄ss), as these agents were going to get the app soon anyways.

Second, Panel (b) reveals that the low adoption equilibrium is unstable: the dynamics of the

system following a perturbation are explosive, i.e., the sequence in equation (25) does not

converge so that the system does not return to the invariant distribution after the shock. To

appreciate the explosive nature of the path nearby the low activity stationary equilibrium,

notice the difference in the scales of the two panels.
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5 The Planning Problem

This section sets up the planning problem, characterizes of its solution, and shows how it

can be decentralized as an equilibrium with a subsidy.11 The planner solves a non-trivial

dynamic problem since the state of the economy is an entire distribution.

At time zero the planner solves:

max
{x̄(t)}

{∫ ∞

0

e−rt
∫ U

0

(1/U −m(s, t))︸ ︷︷ ︸
Density of adopters

s (θ0 + θnN(t))︸ ︷︷ ︸
Flow benefit

ds dt

−
∫ ∞

0

e−rtc (Nt(t) + νN(t)) dt︸ ︷︷ ︸
Flow of adoption cost: gross new adoptions

}

subject to

N(t) = 1−
∫ x̄(t)

0

m(s, t)ds for all t

mt(x, t) = −ν (m(x, t)− 1/U) +
σ2

2
mxx(x, t) for x ∈ (0, x̄(t)) and all t ≥ 0 KFE

m(x, t) = 0 for x ∈ [x̄(t), U ] and all t ≥ 0 Adoption

mx(0, t) = 0 for all t ≥ 0 Reflecting

m(x, 0) = m0(x) for all x . Initial condition

The objective function of the planner integrates the lifetime utility of agents using as a

weight the discount factor e−rt for the cohort born at t. The first term contains the utility

flow of the agents who use the technology. The second term subtracts the cost of adoption,

where c(Nt(t) + νN(t)) is the gross flow cost of adoption at time t. This flow cost is driven

by the inflow of new adopters Nt(t) and by the replacement of dead agents (who had adopted

in the past) by newborns.12 The first constraint defines N(t), the second constraint is the

KFE for the density of non-adopters, m. As before, the density is zero to the right of x̄(t),

there is an exit point at x̄(t), and there is a boundary condition from the reflection at zero.

At each time t the planner decides a threshold x̄(t) that determines adoption, taking as

given the initial conditionm0(x) and the law of motion of the densitym (affected by the choice

of x̄). To characterize the solution, we write the Lagrangian for this problem. We denote the

11Appendix D.1 characterizes the stationary solution of this problem. Appendix D.5 uses a linearized
version of the problem to analyze dynamics around its invariant distribution, an exercise that is akin to the
one of Section 4.

12At every moment there is an inflow ν of newborns without the app. A fraction 1− x̄(t)
U of the newborns

immediately pays the cost c and adopts, see Appendix D.2 for details.
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Lagrange multiplier of the KFE equation by e−rtλ(x, t) and replace N(t) and Nt(t) by the

corresponding definition. To derive the p.d.e’s for non-adopters, we first adapt the planning

problem to a discrete-time discrete-state problem using a finite-difference approximation. In

this set up, we allow for a more general policy, i.e., not necessarily a threshold rule. We

obtain the first order conditions for a problem in finite dimensions and take limits to find the

corresponding p.d.e’s, summarized in the following proposition.13

Lemma 8. A planner’s problem is given by {x̄(t), λ(x, t),m(x, t)} such that adoption

occurs for x ≥ x̄(t), and the Lagrange multiplier λ, and the density of non-adopters m solve

the p.d.e. for non-adopters:

ρλ(x, t) = x
(
θ0 + θn[1−

∫ x̄(t)

0

m(s, t)ds]
)
+ θn

(
U
2
−
∫ x̄(t)

0

m(s, t)s ds
)

(26)

+ σ2

2
λxx(x, t) + λt(x, t) for x ≤ x̄(t) and t ≥ 0

λ(x, t) = c for x ≥ x̄(t) and t ≥ 0

λx(x̄(t), t) = 0 for t ≥ 0 (27)

λx(0, t) = 0 for t ≥ 0

and mt(x, t) = ν
(
1/U −m(x, t)

)
+ σ2

2
mxx(x, t) for x < x̄(t) and t ≥ 0

m(x, t) = 0 for x ≥ x̄(t) and t ≥ 0

mx(0, t) = 0 for t ≥ 0

m(x, 0) = m0(x) for all x .

This lemma has two important consequences. First, it allows us to compute the solution

of the planning problem following similar steps as the ones used to compute the equilibrium in

Section 3.1. Second, it indicates how to decentralize the optimal allocation as an equilibrium.

Define Z(t) ≡ U
2
−
∫ x̄(t)
0

m(s, t)s ds ≥ 0 and note that this non-negative magnitude is the

difference between the average x in the population, U/2, and the average x among those who

have not adopted the technology (the integral term). Comparing the p.d.e. for the Lagrange

multiplier λ in equation (26) with the p.d.e. for D that characterizes the equilibrium in

equation (9), we see that these equations only differ in the flow term θnZ(t). Thus, if agents

who adopt the technology are given a flow subsidy θnZ(t) every period after they have adopted

(independent of the app’s usage), then the planner allocation is an equilibrium. Clearly, this is

equivalent to a once and for all payment to agents adopting at t equal to θn
∫∞
t
e−ρ(s−t)Z(s)ds.

Note that θnZ(t) contains the inframarginal valuation of the technology for those that use it,

13We provide details of this derivation in Appendix D.3.
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so the subsidy’s work by correcting the externality associated with the individual adoption.

We summarize this discussion in the following theorem.

Theorem 3. Fix an initial conditionm0 and the solution to the planner’s problem {x̄, λ,m}.
The planner’s allocation coincides with an equilibrium with the same initial conditions and

a time-varying flow subsidy paid to adopters given by θnZ(t), where

Z(t) ≡ U
2
−
∫ x̄(t)

0

m(s, t) s ds for all t ≥ 0 (28)

The subsidy θnZ is independent of x.

For future reference, we define Z ≡ Z(x̄;m0) as the solution of the path for Z defined

in equation (28). In particular, given x̄ and m0, we solve for m using the KFE and then

compute Z.

Consider the path x̄ that solves the p.d.e. ρλ(x, t) = x (θ0 + θnN(t))+θnZ(t)+
σ2

2
λxx(x, t)+

λt(x, t) with the three boundaries given in equation (27) given the paths of N and Z and

terminal condition λ(x, T ) = λT (x). Let x̄ = X P (N,Z;λT ) denote the functional, defined

as the X in Section 2.1, where the superscript P denotes the planning problem. Note that,

using the definitions for X P ,Z and N the planner’s problem must satisfy the fixed point

x̄∗ = H(x̄∗, λT ,m0) where H(x̄;λT ,m0) ≡ X P (N (x̄;m0),Z(x̄;m0);λT ). We can use the

analysis used in Section 3, based on monotonicity, to characterize the solution to this fixed

point problem, and to compute it.

Figure 3 illustrates how the application of the optimal subsidy leads to a high adoption

equilibrium. In Panel (a) of the figure, we plot the time path of the share of adopters, N(t),

for the planning problem, using the stationary equilibrium distribution of non-adopters as

the initial distribution (i.e., m0(x) = m̃(x)). Let denote by Nss the value of the equilibrium

steady state. In the planning problem, the path of N(t) jumps immediately from Nss (at the

time the subsidy is introduced) and gradually converges to the stationary distribution for

the planning problem.14 Panel (b) shows the time path of the optimal subsidy to implement

the optimal, Z(t), which starts at the value Z(0) = U
2
−
∫ x̄H
0

m̃(s)sds and increases over

time. In this example, the high-adoption equilibrium has partial adoption, i.e. Nss < 1, but

the efficient allocation, as can be seen in panel (a), converges to almost full adoption of the

technology.

14In this example, Nss = 0.42.
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Figure 3: Planning Problem: m0(x) = m̃(x)

(a) N(t) (Optimal) (b) Z(t)

6 Application: SINPE, A Digital Payments Platform

In May 2015, the Central Bank of Costa Rica (BCCR) launched SINPE Movil (hereafter,

SINPE), a digital platform that enables users to make money transfers using their mobile

phones.15 To utilize SINPE, users must have a bank account at a financial institution and

link it to their mobile number. According to the BCCR, the primary objective of SINPE was

to become a mass-market payment mechanism that could reduce the demand for cash as a

method of payment. As such, SINPE was originally designed for relatively small transfers,

which are not subject to any fee as long as they do not exceed a daily sum. The maximum

daily amount transferred without a fee varies by bank; for most users, it is approximately

$310, although some banks have lower limits of $233 and $155.16 The average transaction

size in SINPE is about $50, and has slowly decreased over time, as shown in Figure G2.

6.1 Data

This section describes the battery of administrative datasets used in the paper. First, we

leverage data on Sinpe transactions. Our data on SINPE usage is comprehensive: For each

user in the country, we have official records on the exact date when she adopted the tech-

nology, along with records on each transaction made. In particular, for each transaction,

the data records the amount transacted along with the individual identifier of the sender

and the receiver of the money. Records also include the sender’s and the receiver’s bank.

15SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos Electronicos) in Spanish.

16Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones. These amounts correspond with 2021 limits and exchange rates.
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Importantly, this information is available, not only for individuals, but also for firms.

We also leverage information on networks of coworkers for each formally employed individ-

ual, along with their income. Matched employer-employee data is obtained from the Registry

of Economic Variables of the Central Bank of Costa Rica, which tracks the universe of for-

mal employment and labor earnings. The data include monthly details on each employee,

including her earnings and employment history spanning SINPE’s lifetime (2015-2021).17

The average number of coworkers in our sample is 4.7 (median 1). With this information,

we can identify which people are working at the same firm in a given month to construct

networks of coworkers which can be matched to SINPE records. Networks of coworkers vary

at a monthly frequency as people change employers.

While our baseline analysis focuses on coworkers networks, we complement its statistics

with those of other network types, namely, networks of neighbors and relatives. We construct

networks of neighbors for all adult citizens in the country leveraging data from the National

Registry and the Supreme Court of Elections. The data consist of official records on the

residence of each citizen.18 Data on nationwide family networks is available from the National

Registry and makes it possible to reconstruct each person’s family tree.19 The data includes

individual identifiers that can be linked to SINPE. The same data source provides details on

individual demographics. Finally, we leverage data on corporate income tax returns from the

Ministry of Finance for the universe of formal firms. The data contains typical balance sheet

variables since Sinpe’s inception, and includes details on each firm’s sector and location.

6.2 From Model to Data

As described in the previous section, we obtained (i) transaction-level data including informa-

tion on the senders and receivers who took part in each transaction since the app’s inception,

and (ii) individual-level data on networks from official sources. Further, crucially, we can link

identifiers in (i) and (ii). We leverage this substantial data effort to construct measures of

networks (N) for each individual and to obtain individual-level measures of adoption at the

extensive and intensive margins. Our baseline analysis focuses on networks of coworkers—the

network for which we can more credibly identify network changes that are plausibly orthog-

onal to changes in app usage. This will enable us to document evidence of selection (x) and

17It is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),
which is significantly below the Latin American average of 53.1% (ILO, 2002).

18While the records include each person’s district of residence, and there are 488 districts across the country,
they also include the voting center which is closest to the citizen’s residence, with 2,059 centers in total. Thus,
we leverage the latter to get a more precise notion of a person’s neighborhood. Approximately, 1,670 adults
are assigned to each voting center, on average (median 613).

19We find that the average number of first-degree, second-degree, and third-degree relatives is 6.4 (median
5), 10.9 (median 9), and 22.0 (median 18), respectively.
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cleanly identify θn, which governs the strength of the strategic complementarities and will be

crucial for the policy analysis and the estimation of the optimal subsidy.

6.2.1 Evidence of Selection at Entry

Through the lens of our model, early adopters—who started using the technology even when

the network was small—should be more intense users (with higher x). Consistent with

this notion, we document that early adopters have distinct characteristics as compared with

users who adopted later. For this exercise, and throughout the entire paper, we classify

an individual as an adopter starting from the time when she first used the app. First, as

shown in Figure 4, we find that early adopters have a higher average wage as compared with

individuals who adopted later (Panel (a)), and are on average more high-skill (Panel (b)).20

Early adopters are also younger, on average, than later adopters, as shown in Figure G6.

Figure 4: Average Wage and Skill at the Time of Adoption
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Notes: Panel (a) shows the cross-sectional distribution of SINPE users’ monthly wages in USD. Panel (b) shows the cross-

sectional distribution of SINPE users’ skills. High skill users are those that are in an occupation that requires more than a high

school degree. Both panels show averages weighted by the number of transactions of each user. Both figures include a vertical

dashed line to mark the start of the COVID-19 pandemic (March 2020).

Second, we can more closely bring the model to the data by interpreting the flow benefit

of agents who adopt the technology as being proportional to how intensively they use SINPE.

Suppose SINPE users choose the intensity with which they use the app. Specifically, suppose

20We classify an occupation as high-skill if it requires education or training beyond a high-school diploma.
The dashed vertical line in each figure denotes the beginning of the pandemic, which just as in Figure G1
did not have a major impact on overall trends.
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ξt is the probability of a transaction per unit of time, maximizing the following expression:

ξ∗t (xt, Nt) = argmax
ξt

1 + p

p

[
β(xt, Nt)ξt −

ξ1+pt

1 + p

]
,

where p > 0 so that the problem is convex and β(xt, Nt) > 0. The first order condition

describes the optimal intensity in which the technology is used: ξ∗t (xt, Nt) = β(xt, Nt)
1/p,

and we can choose the function β(xt, Nt) such that the indirect utility function gives the

specified flow benefit, i.e:

[θ0 + θnNt]xt = max
ξt

1 + p

p

[
β(xt, Nt)ξt −

ξ1+pt

1 + p

]
for all xt ∈ [0, U ] and Nt ∈ [0, 1]. (29)

The solution is given by β(xt, Nt) = [(θ0 + θnNt)xt]
p
p+1 ; combining this expression with the

first-order condition and taking logs with obtain:

ln ξ∗t =
1

1 + p
ln [(θ0 + θnNt)] +

1

1 + p
lnxt. (30)

Given the discreteness of the number of transactions in the data, ξ∗t is interpreted as the mean

of a Poisson distribution; transactions each period are drawn from a Poisson probability dis-

tribution with mean ξ∗t (i.e. Tt ∼ Poisson(ξt)). Thus, if we were to remove the network×time

variation from the logarithm of the number of transactions, then they would proxy for lnxt,

as through the lens of the model only the idiosyncratic variation would remain. The model

also predicts that users with a higher x would adopt the technology earlier. Thus, we can

obtain a relation between intensity of usage (Tnit) and the share of user i’s network who had

adopted the technology at the time when she first used the app (Nn
i,entry):

ln Tnit = γ + ζNn
i,entry + λnt + νnit,

where n ∈{neighbors, coworkers, relatives} and Tnit is defined as number of transactions of

user i each month t. Our model predicts that ζ < 0, as users who adopted the app (“entered”)

when the network was smaller should have a higher idiosyncratic taste for the app and use it

more intensively—note that the inclusion of the network-time fixed effect, λnt , prevents this

relationship from being mechanical.

We estimate ζ̂ to be −2.7 when defining a network as a neighborhood. This relationship

is shown in Column (1) of Table 1, and while suggestive, points to the presence of selection

at entry. The relation is also robust to defining networks using coworkers and relatives, as

shown in Columns (2) and (3) in Table 1. The relation also holds if, instead of the total
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number of transactions, we consider the value of transactions as our dependent variable, as

reported in Table G2.

Table 1: Number of Transactions and Size of Network at Entry

Dependent variable: Number of Transactions (IHS)

(1) (2) (3)

Size of Coworkers’ Network at Entry -1.300***
(0.043)

Size of Neighbors’ Network at Entry -2.730***
(0.025)

Size of Family Network at Entry -1.181***
(0.006)

Observations 16,138,736 34,409,818 14,700,288
Network×Time/Cohort FE Yes Yes Yes
Adjusted R-squared 0.304 0.234 0.199

Notes: The dependent variable in this estimation is the number of transactions each month for each user transformed using
the inverse hyperbolic sine function. Coefficients describe the effect of increasing the share of an individual’s network who had
adopted the app at the time when she used it for the first time. All regressions control for network size (in levels) and use data
from May 2015, when the technology launched, to December 2021. Standard errors, clustered by individual, are in parenthesis.

6.2.2 Estimating the Strength of the Strategic Complementarities

The core idea behind strategic complementarities is that usage benefits increase with the

size of a user’s network. Recall the expression in equation (30). Under this interpretation of

the model, the intensity with which the application is used, which is observable in the data

(e.g., number or value of transactions), is proportional in logs to the flow benefit of adopting

the application as described in the model. After taking the first order Taylor expansion of

ln(θ0 + θnNt) around N
∗ and plugging it into equation (30), we obtain:

ln Tt ≈ ln(θ0 + θnN
∗) +

1

1 + p

θn(Nt −N∗)

θ0 + θnN∗ +
1

1 + p
lnxt. (31)

Moreover, taking first differences, it follows that:

∆ ln Tt = β∆Nt + νt, (32)

where β ≡ 1
1+p

ϑ
1+ϑN∗ , ϑ ≡ θn

θ0
, and νt ≡ 1

1+p
∆ lnxt. Further, if p ≈ 0, then ϑ = β

1−N∗β
. Thus,

throughout all the tables in this section, we can evaluate N∗ at its mean value to recover

ϑ from each β; these are our coefficients of interest since strategic complementarities in the

adoption of the technology exist if β > 0 ⇐⇒ ϑ > 0 ⇐⇒ θ0 > 0 and θn > 0. Note that
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equation (32) is in differences, therefore, any individual or network characteristics which are

time invariant would cancel out.

With these expressions, one can first naively run an OLS specification. We do so in

Appendix ?? and find a significant correlation between the intensity of app usage and the

share of individuals in the user’s network who have adopted it. This correlation remains

robust across various network definitions, usage intensity measures, and specifications. Then,

we show that the impact of network size on usage intensity persists even after employing a

leave-one-out instrument to address potential endogeneity concerns and measurement errors.

Additionally, this relationship is unaffected when accounting for selection through a balanced

panel of adopters. However, to quantify the model, one ultimately needs to take a stand on

the causal impact of changes in the number of adopters; we do so by focusing on mass layoffs.

Usage After a Mass Layoff (Intensive Margin of Adoption). This strategy focuses

on the network of coworkers and implements both (i) a mover design, where we follow workers

displaced during mass layoffs to examine the effect of network changes on the intensive and

extensive margins of adoption and (ii) an analysis of stayers, in which we instead focus on

workers who remained at a firm after a mass layoff.21 The main hypothesis of the movers

exercise is that workers, who were displaced during a mass layoff and who ended up at firms

where a larger share of colleagues had SINPE (larger N), have more incentives to use the

app via the effect of strategic complementarities. Similarly, the idea behind the analysis of

stayers is that workers who remain at a firm that, for instance, laid off most of its SINPE-

using employees (smaller N), have now less incentives to use the app.

We first analyze the impact of a mass layoff on movers’ usage. To do so, we focus on

workers who were fired during a mass layoff and consider only displaced workers who had

already adopted and had used SINPE at least once by the time they were fired. We then

examine how the intensity with which they use the app changes depending on the change in

the share of coworkers who had SINPE at their old and new firm. As explained before, it is

possible to derive the relationship in equation (??) from our theoretical model, which speaks

to the technology’s usage intensity. Thus, we consider:

∆ ln Ti =α + ζ∆N coworkers
i + γ∆ lnwagei + ψ∆ ln sizei + φ date hiredi+

ω∆Covidi + δλic + ν ln
move∑
t=0

Tti + ν

move∑
t=0

(ln Tt, new firm − ln Tt, old firm) + ϵi, (33)

21To define a mass layoff, we follow Davis and Von Wachter (2011) and identify establishments with at least
50 workers that contracted their monthly employment by at least 30% and had a stable workforce before this
episode and did not recover in the following 12 months. Given we also analyze stayers, we implement a few
additional refinements. Details are provided in Appendix G.2.1.
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where ∆ ln Ti refers to the change in monthly intensity with which individual i used SINPE

within 6 months after arriving at her new firm compared with 6 months before being fired;

∆N coworkers
i is the change between the share of coworkers who had adopted at the old and the

new employer; ∆ lnwagei corresponds with the change in the average wage (in logs) across

6 months before the layoff and after the rehiring; ∆ ln sizei is the change in the number of

workers at each firm; date hiredi controls for the date in which individual i was hired by the

new firm; ∆Covidi controls for the change in the cumulative COVID-19 cases (transformed

using the inverse hyperbolic sine function) in the individual’s neighborhood across the 6

months before the layoff and after the rehiring; λic controls for cohort (i.e., the date when

individual i adopted SINPE); ln
∑move

t=0 Ti is the sum of all historical transactions made by

agent i since she adopted the app, and
∑move

t=0 (ln Tt, new firm − ln Tt, old firm) is the difference in

the (log) historical transactions made by workers at the new firm and the old firm up until the

move occurred, which aims to control for factors—other than strategic complementarities—

which might facilitate adoption at the new vs. the old firm.

This is our preferred specification for several reasons. First, the results are likely not

driven by learning about the app since (i) workers had already adopted the app when they

were fired—and we define “adoption” as making at least one transaction—so they were at

least aware of the app’s existence and had used it before; (ii) we control for tenure in the

app (i.e., the cohort when the user adopted) and for the historical number of transactions in

the app, which as shown before correlate with observables like age, skill, and wage. These

variables aid in controlling for characteristics that are particularly relevant for intensity of

usage and are also useful to addressing learning to better use the app after adopting. Second,

of course, the choice of the new firm after a mass layoff is not exogenous, but this does not

pose a measurement problem as long as sorting is not (both): (i) stronger after a mass

layoff—note that there is no reason why this might be the case, especially as results hold

even when we focus on job-to-job transitions, where workers had little time to find a new job

after being fired exogenously—and (ii) not controlled for by the cohort of the mover, which

proxies for her idiosyncratic characteristics, and difference in the historical transactions at

the new vs. the old firm. The latter control, in particular, helps us rule out stories where,

for instance, workers select into firms where people use the app more intensively for reasons

other than strategic complementarities (like demographics or the internet speed at the firm).

Panel (a) of Table 2 displays our results using the number of transactions per user as our

dependent variable. Changes in the intensity of usage depend positively and significantly on

the change in the share of adopters at the old and new firm. Panel (a1) of Figure 5 displays

the marginal effect of these network changes following the specification described by Column

(2) of Table 2. As this panel shows, not only is the relationship between usage and network
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Table 2: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff

Dependent Variable: ∆ Number of transactions (IHS)

(a) Movers (b) Stayers
(1) (2) (3) (4) (5) (6)

∆N coworkers
i 2.646*** 1.406*** 1.283*** 3.284*** 0.952** 0.971**

(0.203) (0.268) (0.294) (0.237) (0.443) (0.435)
∆ lnwagei 0.383*** 0.385*** 0.203** 0.132

(0.070) (0.077) (0.087) (0.103)
∆Covidi 0.168** 0.167*** -0.010 -0.012

(0.027) (0.032) (0.025) (0.024)

Observations 917 917 917 2,236 2,236 2,236
Time FE No Yes Yes No Yes Yes
Cohort FE/Historical T No No Yes No No Yes
Adjusted R-squared 0.153 0.244 0.262 0.093 0.122 0.184

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs which occurred between May
2015, when the technology was introduced, until December 2021. While time and cohort fixed-effects’ inclusion varies across
columns, all other independent variables in equation (33) are present across columns. Standard errors are in parentheses.

changes positive, but also whenever a worker moves to a firm with a lower adoption rate, her

usage decreases (i.e., the change on the vertical axis is negative), a relationship that would

be hard to reconcile with a pure learning story.22

Column (3) controls for cohort, i.e., date of adoption, which aims to mitigate any effect

of more experienced users behaving differently than beginners. Column (3) also controls for

the total historical transactions made, which in a similar spirit as cohort, intends to mitigate

any effect resulting from learning how to use the app from others. Interestingly, as compared

with Column (3), adding these controls does not change the coefficient of interest almost at

all. This result aligns with the following intuition: at the intensive margin—once users have

already adopted and used the app—a learning story is less plausible, as reflected by ζ not

changing after controlling for cohort and historical usage.

The analysis can be taken to an even more detailed level if, instead of considering all

transactions in the left-hand-side variable, we focus only on those which had a coworker as

a counterpart. This subsample allows us to better identify changes in usage intensity which

are a direct consequence of the arguably exogenous changes in the network of coworkers.

Reassuringly, results are remarkably similar to those using all transactions, as shown in

Panel (a2) of Figure 5.

22The marginal effect considering the value of transactions as dependent variable, as opposed to the number
of transactions, is reported in Figure ??.

29



Figure 5: Marginal Effect of Network Changes on Usage Intensity
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(a1) All transactions (a2) Transactions with coworkers only

(b) Stayers
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(b1) All transactions (b2) Transactions with coworkers only

Notes: Panel (a1) plots the marginal effect of ∆Ncoworkers
i in the specification described by Column (3) of Table 2, while

Panel (b1) plots the marginal effect of ∆Ncoworkers
i in the specification described by Column (6) of Table 2. Bars denote 95%

confidence intervals. The dependent variable in this estimation is the number of transactions (transformed using the inverse
hyperbolic sine function) on each period for each user. Panels (a2) and (b2) are similar, but differ as the dependent variable
in these estimations is the number of transactions which have a coworker as a counterpart (transformed using the inverse
hyperbolic sine function) on each period for each user.
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A similar analysis can be conducted based on stayers. Namely, we focus on workers who

remain at a firm after it experienced a mass layoff. Their change in N will therefore depend

on how the composition of SINPE adopters changed after the mass layoff. We then consider

a regression similar to equation (33), except for the last regressor which would be zero in this

case.23 Results based on stayers are reported in Panel (b) of Table 2 and Panel of Figure 5.

Remarkably, although the movers design is based on a very different sample than the analysis

based on stayers, the estimated coefficients in our preferred specifications, in columns (3) and

(6) of Table 2, are statistically equal.

Adoption After a Mass Layoff. Lastly, we analyze changes in the extensive margin of

adoption. For movers, we consider the change in the probability of adoption for displaced

workers who had not adopted the app by the time they were rehired, and how it depends on

the change in the share of coworkers who had SINPE at their old and new firm. We consider:

Adopti =α + ζ∆N coworkers
i + γ∆ lnwagei + ψ∆ ln sizei + φ date hiredi+

ω∆Covidi + ν
move∑
t=0

(ln Tt, new firm − ln Tt, old firm) + ϵi, (34)

where Adopti equals one if individual i adopted SINPE within 6 months after arriving at her

new firm, and zero otherwise. Other variables are defined in the same way as in equation (33).

For stayers, we instead consider the probability of adoption for workers who were not fired by

a firm which underwent a mass layoff and how it depends on the change in the composition

of workers who had SINPE, before and after the mass layoff took place. We then use a

regression similar to equation (34), except for the last regressor which would be zero.

Panels (a1) and (b1) of Figure 6 estimate equation (34) using a logit model. The marginal

effects of changes in network adoption are reported in brackets. The analysis of movers in

panel (a1) consistently finds that workers who, after a mass layoff, were hired by firms where

the rate of SINPE adoption was higher than their previous employer’s are more likely to adopt

SINPE than their counterparts who moved to firms where the change in their coworkers’ rate

of adoption was smaller. Reassuringly, panel (b1) also finds that workers who experienced

an increase in the share of adopters among their peers were more likely to adopt SINPE

themselves. The marginal effect of ∆N coworkers
i , under the specification described by Column

(3) in each table, is shown in panels (a2) and (b2). These marginal effects are monotonous

and, as expected, are present only when the change in the share of adopters is positive,

regardless of the subsample considered.

23An additional control equal to the change in the average wage at the workers’ firm delivers statistically
equal results, both for the intensive and extensive margin analyses.
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Figure 6: Adoption Probability and Changes in Coworkers’ Network After a Mass Layoff
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(0.161) (0.207) (0.208)
[0.450] [0.376] [0.350]

∆ lnwagei 0.076 0.040
(0.055) (0.056)

∆Covidi 0.097***
(0.026)

Observations 10,176 8,035 8,035
Time/Cohort FE No Yes Yes
Pseudo R2 0.507 0.529 0.530

(a1) Changes in Adoption Probability (a2) Marginal Effect of Network Changes

(b) Stayers
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[0.716] [0.442] [0.437]

∆ lnwagei -0.104 -0.098
(0.089) (0.089)

∆Covidi (0.089) (0.089
(0.016)

Observations 8.32124,329 23,005 23,005
Time/Cohort FE No Yes Yes
Pseudo R2 0.330 0.356 0.357

(b1) Changes in Adoption Probability (b2) Marginal Effect of Network Changes

Notes: Panels (a1) and (b1): The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, and December 2021. Standard errors are in parentheses.
Marginal effects for the main variable of interest are reported in brackets. Panels (a2) and (b2): The figures plot the marginal
effect of ∆Ncoworkers

i in the specification described by column (3) of panels (a1) and (b1), respectively, in this figure. Vertical
bars denote 95% confidence intervals.

7 Quantitative Performance and Optimal Subsidy

In this section, we calibrate our model and evaluate its performance relative to SINPE data.

We begin by describing an extension of the model that combines the model of strategic

complementarities with a learning model. The model with only strategic complementarities

assumes that all individuals are informed about the technology at all times. However, accord-

ing to the 2017 Survey of Payment Methods conducted by the Central Bank of Costa Rica,
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only about 5% of adults reported knowing about SINPE Móvil two years after its launch.

The hybrid model helps align the model with this fact and, as a result, with the smooth and

relatively flat path for N(t) during the first few years after the launch displayed in Figure 7.

Next, we describe our calibration procedure in detail.

A Learning Model with Strategic Complementarities. It is straightforward to ex-

tend our benchmark model of strategic complementarities to include random diffusion of the

technology across agents. We adapt Bass’s (1969) model of information diffusion for new

products to our setup. We assume newborn agents are initially uninformed, and become

informed by randomly matching with informed agents. Thus, the variational inequality of

the adoption decision (i.e., net value of adoption a(x, t)− c and the net optimal value v(x, t))

are the same as in the model with strategic complementarities, since this decision to adopt

can only be made after agents are aware of the technology. However, the law of motion of m

needs to be modified to include the inflow of informed agents as in a random diffusion model:

mt(x, t) =
σ2

2
mxx(x, t) +

β0
U
I(t)(1− I(t))− νm(x, t) all t ≥ 0 and x ∈ [0, x̄]

m(x, t) = 0 all t ≥ 0 and x ∈ [x̄, U ]

mx(0, t) = 0 all t ≥ 0

where I(t) denotes the fraction of the population informed about the technology and the

parameter β0, which gives the number of meetings per unit of time between those informed,

I(t), and those uninformed, 1− I(t). The term β0
U
I(t)(1− I(t)) is the flow of agents per unit

of time that learn about the app. See Appendix E for details.24

Calibration. We interpret the flow benefit of agents who adopt the technology as being

proportional to how many transactions they conduct, and assuming a convex adjustment

cost (i.e., p > 0). U can be normalized without loss of generality (we use the normalization

U = 1), so the problem features seven independent parameters: ν, r, θn, θ0, σ, p, and c. The

model with learning has an additional parameter, β0, and an initial condition for the informed

population, I(0).

The parameters ν, r, β0 and are calibrated externally. We set ν to 0.0278 to match the

24The appendix develops a model of pure learning featuring random diffusion of the technology across
agents. In the model, agents can be either uninformed about the technology, or informed about it. If they
are informed, they can decide to pay a cost c and adopt it. Once an agent adopts the technology her flow
benefit depends on the idiosyncratic value of the random variable x, but not on the size of the network, i.e.,
θn = 0. The model has four main conclusions: i) it has a unique equilibrium, ii) it has a logistic S shape
adoption profile if the initial share of informed agents is small, iii) the use of the technology for those that
adopt depends only on the cohort, and iv) the equilibrium is constrained efficient.
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rate at which agents stop using SINPE; namely, the average fraction of agents in 2019-2021

who had adopted SINPE but did not conduct a single transaction in the app within a year.

We use the last three years of the data, when the adoption rate is higher, to focus on periods

closer to a stationary equilibrium. We set the discount factor r to be consistent with a 5

percent annual interest rate. This value is a lower bound for r, which can admit higher values

if we assume agents expect new technologies to arrive in the future and replace SINPE. The

values of ν and r imply ρ = r + ν = 0.0778. Lastly, we set β0 = 1.33 to match the share of

people informed about the app (approximately 5% two years after the launch) for an initial

condition of I(0) = 0.001 (i.e. 0.1 percent of the workers are informed about SINPE at the

time it was launched).

The parameters θn, θ0, σ, p are calibrated using simulated methods of moments (SMM).

Intuitively, we aim to choose parameters that make the model consistent with the distribution

of transactions in the data and the mass layoff exercise. To achieve this, in the data, we

focus on workers at firms active from 2019 to 2021 with more than 5 employees. We take

advantage of having closed form solutions for the steady state. Thus, we concentrate on firms

close to a stationary equilibrium, specifically those whose N (fraction of employees with the

app) changed by less than 0.1 percentage points in 2021. We then compute moments from

the empirical distribution of transactions over the years 2020-2021 and simulate the model,

replicating the same characteristics as our empirical sample. In addition, we simulate a

sample of firms that replicates the characteristics of those subject to a mass layoff. We do

this to run the same estimation, presented in Section 6.2.2, in the simulated data to obtain

information on the parameters governing the strength of the strategic complementarities. We

then choose the parameters that minimize the distance between the moments in the data and

the model. We provide more details of our strategy below.

Simulation. We begin by simulating the model for a monthly panel of agents. Our sim-

ulation takes as given the values of ν, r, and β0, since they are calibrated externally, and

Nss = 0.90, which is obtained from our sample of firms close to a stationary equilibrium.

Initial conditions x(0) are drawn from the stationary distribution of adopters. To find this

distribution, we first find x̄ss using the following equation:

Nss = (1− ν
β0
)

[
1− x̄ss

U

(
1− tanh(γx̄ss)

γx̄ss

)]
.
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Then, given x̄ss, we find the distribution of adopters using the stationary distribution of

non-adopters:

m̃(x) = (1− ν
β0
) 1
U

(
1− cosh(γx)

cosh(γx̄ss)

)
where γ =

√
2ν/σ

using that Nss = Iss −Mss and Iss = (1 − ν
β0
). We simulate a panel of 5,000 individuals.25

In the simulation, agents die at rate ν and they become inactive in the application just as

in the data. The process of x follows a Brownian motion, independent across agents, with

variance per unit of time σ, no drift, and reflecting barriers at x = 0 and x = U . Since x is

unobserved and what is observed are transactions, as before, we interpret the flow benefit of

agents who adopt the technology as being proportional to how intensively they use SINPE.

Thus, we compute: ξt = [θ0(1+ϑNss)xt]
1

1+p , where ϑ ≡ θn
θ0
, to find the number of transactions

Tt by drawing them from a Poisson probability distribution Tt ∼ Poisson(ξt).

Mass Layoff. We also simulate a panel of workers at firms with the same characteristics

as those experiencing mass layoffs in the data. Specifically, as presented in Table G3, we

simulate a sample of 292 firms with 94 employees each. We focus on workers who remain at a

firm after it has experienced a mass layoff (i.e., stayers).26 We then examine how the intensity

with which they use the app changes depending on the change in the share of coworkers who

had SINPE after a mass layoff. The change in N depends on how the composition of adopters

changes after the mass layoff, which involves randomly choosing and removing a fraction of

workers from each firm undergoing a mass layoff. We choose the magnitude of these mass

layoffs to match the average size of these events in the data (i.e., 57%). We then run the same

regression that is implemented in Table 2. First, we calculate the number of transactions

before and after the mass layoff event. Then, we regress the change in monthly transactions

within six months of the mass layoff event on the change in the share of coworkers who had

adopted the app before and after the event. The estimated coefficient is a moment that we

target in our calibration

Cost of Adopting. The adoption cost, c, can be obtained from the solution of the sta-

tionary problem for adoption, given a value of x̄ss and the parameters θn, θ0, σ. In particular,

we use the following equation:27

25Our estimates are not sensitive to simulating a larger sample of users.
26Table 2 shows that the estimated impact of a mass layoff on usage is statistically equal for movers and

stayers.
27All details on the derivation of this equation can be found in Appendix B.1.
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x̄ss + Ā1e
ηx̄ss + Ā2e

−ηx̄ss − c/θ̄ss

1 + η
(
Ā1eηx̄ss − Ā2e−ηx̄ss

) =
1

η

eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)
where η =

√
2ρ/σ

where Ā1 =
1
η

(1−e−ηU)
(e−ηU−eηU ) , Ā2 =

1
η

(1−eηU)
(e−ηU−eηU ) and θ̄ss ≡

θ0+θnNss
ρ

.

Calibrated Moments. We target the following five moments: the mean number of trans-

actions, the median number of transactions, the absolute value of changes in transactions,

the coefficient of the mass layoffs regression, and the autocorrelation of the number of trans-

actions. As done throughout the paper, all the targeted data moments are calculated after

controlling for COVID-19 cases. Parameters θn, θ0, σ, and p are chosen to minimize the sum

of the norms of the percent deviations of simulated moments from target moments.28 Table 3

reports the empirical and simulated moments.29

Table 3: Moments: Distribution of Transactions

Parameter Value Std. Dev. Moment Data Model
σ 0.034 0.005 Mean Number of Transactions 6.88 6.86
θ0 26.31 3.195 Median Number of Transactions 6.08 6.66
p 0.0056 0.0003 Absolute Value Changes in Transactions 3.48 2.77

ϑ ≡ θn
θ0

5.722 1.141 Coefficient Mass Layoffs Regression 0.97 0.97

Autocorrelation of Transactions 0.97 0.95

Intuitively, the mean and median number of transactions provide information about θ0

and p, as shown by equation (30). The dispersion in the changes of transactions and the

autocorrelation of transaction provide relevant information to pin down σ; a lower variance

decreases the absolute value of the changes in transactions but increases the autocorrelation

coefficient. Lastly, equation (32) shows that the coefficient of the mass layoffs regression

informs the estimation of θn.
30 Targeting this moment allows us to leverage the rich vari-

ation across networks to inform the model estimation. Importantly, by running the same

28This is, min
∑5

i ω(i)
|Model(i)−Data(i)|

Data(i) , where Model(i) is a simulated i-th moment and Data(i) is a target

value of i-th moment. We assign half of the weight to each of the mean and median of transactions since they
provide similar information for the calibration. We assign twice as much weight to the coefficient of the mass
layoff regression, as this moment provides information about the strength of the strategic complementarities.

29We simulate the model 200 times and use the average values of the moments from the simulated data.
In the model and the data, we calculate the autocorrelation of the average transactions over two years to
minimize the impact of measurement error in the autocorrelation coefficient. The standard deviation of the
parameters is obtained from the the SMM variance-covariance matrix, which is obtained from calculating the
derivative of the criterion function with respect to each parameter.

30The learning model in Appendix E cannot capture the patterns observed after mass layoffs, as it features
random diffusion of the technology. Consequently, after adoption, an agent’s flow benefit does not depend
on the network size N (i.e., θn = 0).
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regression in both the data and the model, we do not rely on approximating the relationship

between the change in transactions and the change in the share of users who have adopted

the technology around the stationary equilibrium to obtain information about ϑ, as done in

equation (32). Overall, Table 3 shows that the model is quantitatively consistent with the

empirical distribution of transactions.31

Figure 7: Path of Adopters (Short-Run and Long-Run)

(a) Model vs Data (b) Long-Run Path

(c) Comparative Statics: Nss (d) Comparative Statics: x̄ss

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the patterns of diffusion
of the technology in the median firm, where the percentile is calculated in the last period of the sample using the share of
individuals that had adopted the technology. The dashed red lines show the 10th and 90th percentiles. Panel (b) shows the
share of informed agents, I(t), the share of adopters, N(t), and the levels of x̄(t) predicted by the model under our baseline
calibration. Panel (c) and (d) show how Nss and x̄ss change with ϑ and σ, keeping the rest of the parameters constant. The
black diamonds indicate the levels of ϑ and σ in our baseline calibration.

Results. Using the estimated parameters, we simulate the dynamic model to obtain the

adoption path predicted by the model. Panel (a) of Figure 7 compares the path of adoption in

31A sensitivity analysis of the relevant parameters can be found in Appendix H.
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the model and in the data. The solid red line indicates the diffusion of the technology in the

median firm and the dashed lines represent the 10th and 90th percentiles after controlling for

COVID-19 cases.32 The figure shows that both the speed and the level of adoption generated

by the model are consistent with those in the data. Panel (b) shows the path of I(t), N(t)

and x̄(t). The path of I(t) shows that most people are informed about the technology within

the first 7 years; in the stationary distribution, approximately 98% of the population knows

about the application and 90% of the workers the median firm adopt the application as shown

by the path of N(t). Importantly, the declining path of x̄(t) indicates that, consistent with

our empirical evidence, the model features selection: agents that benefit the most from the

technology adopt first. This contrasts with the model that features only learning, which

shows no selection in the adoption of the technology.33

Panels (c) and (d) of Figure 7 display the values of Nss and x̄ss in the stationary equi-

librium as we vary ϑ and σ, while holding others constant. These panels illustrate the

comparative statics of the stationary equilibrium derived in Section 3.3. Panel (c) shows

how the stationary level of adoption changes with ϑ and σ (a black diamond denotes Nss’s

level in the baseline calibration). As ϑ increases, so does the strength of the strategic com-

plementarities, and not surprisingly, Nss increases as ϑ rises. The effect of σ is more subtle

and results from two opposing forces. On the one hand, higher σ decreases Nss since agents

have a higher option value of waiting to adopt. On the other hand, higher σ increases Nss,

since it implies a smaller density of non-adopters below x̄ss. In our calibration the latter

effect dominates and Nss increases with σ. Panel (d) displays a similar exercise for x̄ss. It

shows that strategic complementarities ϑ play an important role in decreasing the adoption

threshold. Moreover, given ϑ, a higher σ increases x̄ss

Variation Across Networks. The model is consistent with both high and low adoption

networks of firms, each implying a different path of adopters in equilibrium. Specifically, we

calibrate the model by targeting moments from individuals at firms whose level of adoption

is either above the median (high adoption) or below the median (low adoption).34 We target

the same data moments computed for different samples of workers, specifically those working

at firms whose average level of adoption is either above the median, Nhigh
ss = 0.96, or below

32We adjust the adoption path in the data to control for the pandemic. To do so, we estimate the impact
of COVID-19 cases on the number of new users and subtract the predicted number of pandemic-driven new
users from the cumulative number of users.

33Appendix H.3 presents a version of the model without strategic complementarities and only learning
(i.e., ϑ = 0). In this case, the path of x̄(t) is completely flat. Figure H7 shows the paths of N(t) and x̄(t) for
different speeds of information diffusion; namely, different values of β0. It shows that selection occurs in the
model even when the speed of information diffusion is very high.

34The details of the calibration can be found in Appendix H.2.
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the median, N low
ss = 0.73, and we assume the same coefficient for the mass layoffs regressions

in both calibrations. We estimate a higher level of strategic complementarities (i.e., higher ϑ)

in networks with high adoption and a higher convexity in the cost of conducting transactions

in low adoption networks (i.e., higher p). Panel (a) of Figure 8 shows the path of adopters

in the two calibrated networks (high and low adoption) relative to the data, indicating that

these calibrated versions of the model are consistent with the 10th and 90th percentiles of

adoption in the data. Panel (b) show the path of x̄(t), which indicates the strength of the

strategic complementarities in each of the calibrated networks. In the high adoption network,

96% of the population adopts the application. In the low adoption network, only 73% of the

population adopts in the stationary equilibrium.

Figure 8: Variation Across Networks: Path of Adopters

(a) Model vs Data (b) Path of x̄(t)

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the diffusion patterns
of the technology in the median firm, and the solid black line shows the diffusion patterns in the benchmark calibration of the
model. The dashed red lines indicate the 10th and 90th percentiles of adoption in the data. The solid magenta line shows
the path of adopters in the model calibrated for high adoption, and the solid blue line shows the path of adopters in the low
adoption calibration. Panel (d) shows the levels of x̄(t) under each of the calibrations, respectively.

Optimal Subsidy. Panel (a) of Figure 9 shows the optimal adoption path in the model

with complementarities (blue line) relative to the high-adoption equilibrium (black line).

During the first three years after the launch of the technology, the optimal level of adoption

is similar to that of the equilibrium without subsidy. Afterward, the optimal path of adopters

from the planning problem is higher. In fact, by the beginning of 2020, it is equal to the total

number of informed agents in the economy—over 13 percentage points higher than the levels

of adoption observed in the data—and by the end of 2021, it is over 15 percentage points
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Figure 9: Planning Problem: Solution and Optimal Subsidy

(a) Optimal Path of Adopters (b) Optimal Subsidy

(c) Multiplicity: High Cost (d) No Multiplicity: Low Cost

Notes: Panel (a) shows the share of informed agents, I(t), the share of adopters, N(t), and the optimal levels of adoption,
N(t) (optimal), according to the solution of the planning problem. Panel (b) shows the path of the ratio between the optimal
subsidy θnZ(t) and the flow benefit of the average adopter, Z(t)(θ0 + θnN(t)). Panel (c) shows the share of informed agents,
I(t), the share of adopters, N(t), and the optimal levels of adoption, N(t) (optimal), according to the solution of the planning
problem for a high adoption cost and 70% of the population informed 7 months after the launch of the technology. Panel (b)
shows the same variables for a lower adoption cost and 70% of the population informed 7 months after the initial launch. The
initial distribution in both panels is m0(t) = 1/U .

higher. Panel (b) shows the path of the optimal subsidy.35 As the share of adopters increases,

so does the externality. Thus, the optimal subsidy, which is the same across agents, increases

over time. To see why, notice the optimal flow subsidy in equation (28) can be written as

θnZ(t) = θnN(t)× E(x|adopted),

35Figure 9 shows the subsidy θnZ(t) as a ratio of the net flow benefits (i.e., (θ0 + θnN(t))E(x|adopted)).
In the invariant distribution, the subsidy-to-benefit ratio is approximately 0.84.
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where the expectation over x is taken over the set of agents that have adopted the technology

(see Theorem 3). The first term θnN captures the size of the adoption externality, i.e., the

additional benefits for agents that adopt the technology. Thus, the subsidy increases as

more agents adopt. Conversely, E(x|adopted) decreases as more agents adopt, since the

marginal adopter has lower idiosyncratic benefits from adopting the technology. Intuitively,

the planner internalizes that subsidizing agents with low x also benefits the rest of the agents,

even if the subsidy to incentivize these agents to adopt is large. The first component of the

optimal subsidy dominates and eventually pushes the economy to universal adoption. The

optimal subsidy contrasts with that of a pure learning model, which is constrained efficient

and where the optimal subsidy to adopt the technology is zero. Importantly, the planner is

also constrained by the share of people who are informed ; otherwise, while the subsidy would

still be increasing and the same across agents, there would be a “jump” in the subsidy level

as soon as the application is launched, as depicted in panel (b) of Figure 3.36

In Appendix H.2 we estimate the model using variation across different networks. Our

findings indicate that the model aligns with both high and low adoption networks of firms,

each implying different paths of adopters in equilibrium and different optimal adoption paths

in the planning problem. Consistent with our benchmark calibration, all versions of the model

show that the optimal subsidy pushes the economy toward universal adoption. Figure H6

shows that only for lower levels of ϑ does the planner prescribe lower adoption levels.

Multiplicity. Our model can be used to study economies with higher adoption costs fea-

turing multiple equilibria. We consider an economy with higher adoption cost c and higher

fraction of the population informed about the technology at launch. This example is mo-

tivated by a recent experience in El Salvador, where 70% of the population knew about a

payment app introduced by the government (i.e., Chivo Wallet) 7 months after its initial

launch.37 Panel (c) shows the possible paths of adopters N(t) for this economy. It shows

that, when the adoption cost is larger (in this case 10% higher than in Costa Rica), the

low-adoption equilibrium where nobody adopts the technology is not ruled out; for the same

initial conditions, there is an equilibrium with high adoption and one with no adoption.

Panel (d) shows the same paths for a lower adoption cost. Our model allows for the study

and quantification of policies that eliminate the no-adoption equilibrium even if the optimal

subsidy is not implemented. In this case, a large enough permanent subsidy can lower the

adoption cost, solve the coordination failure, and send the economy to the high adoption

36Figure H8 shows the optimal adoption paths and the respective subsidy-to-benefit ratios for different
speeds of information diffusion.

37The app allows users to digitally trade both bitcoin and dollars.
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equilibrium, i.e., from Panel (c) to (d).38

8 Conclusion

Understanding the adoption process of a technology and the transition from low to high

adoption is challenging, especially in the presence of strategic complementarities. This paper

develops a new dynamic model of technology adoption that allows us to model this transition.

The model provides a framework to generate gradual adoption through a novel mechanism—

waiting for others to adopt—and allows us to derive predictions that can be tested empirically.

We solve for the social planner’s problem. The planner in our setup controls the entire

distribution of adopters across time. The presence of strategic complementarities enriches

the problem and allows us to link our results to the “big push” literature, as they imply that

small subsidies can lead to large changes in adoption given the multiplicity of equilibria. In

our framework, the optimal subsidy increases over time but it is flat across people, thus, easily

implementable. The methodology we develop can be useful for a wide set of multidimensional

dynamic problems, and can be applied to the study of any technology that features strategic

complementarities, learning, or both.

Our application analyzes new electronic methods of payment, which are particularly rel-

evant today and are undergoing a digital transformation. This revolution has been echoed

by a growing interest from monetary authorities to promote and develop digital payment

platforms, both in developed and developing countries. Using individual- and transaction-

level data on SINPE, a national electronic payment system adopted by a large fraction of

the adult population in Costa Rica, along with extensive data on the networks of each user,

we document that strategic complementarities play an important role in the adoption of this

technology. SINPE also provides a rich environment to calibrate the model, which allows

us to estimate the optimal time-varying adoption subsidy and the degree of selection into

adoption across time. These results have implications for the launch and implementation of

payment technologies with similar features such as CBDCs.

38The Salvadorean government did in fact implement a similar subsidy. As an incentive to adopt, citizens
who downloaded Chivo Wallet received a $30 bitcoin bonus from the government. Our model suggests that
the subsidy was not large enough to rule-out the no-adoption equilibrium given the low levels of adoption of
Chivo Wallet reported by Alvarez, Argente and Van Patten (2022).
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Appendix for Online Publication

A Discretization and Computation of Equilibrium

In this section, we describe an algorithm to compute the equilibrium. It is based on finding

a fixed point of the finite difference approximation of the HBJ equation and the Kolmogorov

forward equation.

We define the discretization of the model as follows:

Definition 3. A discretized version of the model is defined by positive integers I, J which

determine the time and space step sizes: ∆t =
T
J−1

and ∆x =
U
I−1

. Thus t ∈ T ≡ {∆t(j− 1) :

j = 1, . . . , J} and x(t) ∈ X ≡ {∆x(i − 1) : i = 1, . . . , I}. The reflecting BM is replaced

by a process with: x(t + ∆t) = x(t) ±∆x each with probability q = 1
2
σ2∆t
(∆x)2

/(1 − ν∆t), and

x(t + ∆t) = x(t) with probability 1 − 2q for 0 < x(t) < U . If x(t) = 0 or x(t) = U , then

x(t + ∆t) = x(t), with prob. 1 − q, and x(t + ∆t) = ∆x, or x(t + ∆t) = U − ∆x with

probability q. Agents die with probability ν∆t, and use a discount factor (1 − ∆tr). The

period flow of those that adopted the technology is [θ0 + θnN(t)]x(t)∆t. Agents that die are

replaced by other whose x is drawn from a uniform discrete distribution with probabilities

∆x/U for each x. For any 0 < ∆t < 1/(r+ ν), the value of J , and hence ∆x must be chosen

so that 0 < q ≤ 1/2. In this case the value functions v and a can be represented as a vector

on v ∈ RI×J , the distribution of non-adopters m ∈ RI×J
+ , threshold path x̄ : T → X, and the

path of the measure of adopters N : T → [0, 1]J . The initial condition is given by m0 ∈ RI
+

and the terminal value by vT ∈ RI
+.

Next we derive and describe the decision problem in discrete time using HBJ, and later

derive and describe the discrete time version of the Kolmogorov forward equation.

A.1 Finite Difference Computation of HJB for v, a Given N

In this section we derive the finite difference approximation for a(x, t) given the path N =

{Nj}Jj=1.

ρaij = xi (θ0 + θnNj) +
σ2

2

[
ai+1,j − 2ai,j + ai−1,j

(∆x)2

]
+
ai,j − ai,j−1

∆t

1



for i = 2, 3, . . . , I − 1 and j = 2, 3, . . . , J − 1, which can be rearranged to give:

ai,j−1 = ∆t xi (θ0 + θnNj) +
σ2∆t

2(∆x)2
[ai+1,j − 2ai,j + ai−1,j] + ai,j − ρ∆tai,j

Thus we define:

p =
σ2

2

∆t

(∆x)2
1

(1− ρ∆t)

and write:

ai,j−1 = ∆t xi (θ0 + θnNj) + (1− ρ∆t) [pai−1,j + (1− 2p)ai,j + pai+1,j]

for i = 2, 3, . . . , I − 1, and j = 2, 1, J − 1, and

a1,j−1 = ∆t x1 (θ0 + θnNj) + (1− ρ∆t) [(1− p)a1,j + pa2,j]

aI,j−1 = ∆t xI (θ0 + θnNj) + (1− ρ∆t) [paI−1,j + (1− p)aI,j]

for j = 2, . . . , J − 1 and at the terminal time we impose:

ai,J = ai,T for i = 1, 2, . . . , I

If we require that p ∈ (0, 1) and 1− 2p ∈ (0, 1) then

1

∆t

=
J − 1

T
> ρ and

σ

√
∆t√

1− ρ∆t

= σ

√
T√

J − 1− ρT
< ∆x =

U

I − 1

We will use aT = ã, i.e., the stationary equilibria ã given Nss as:

ãi = ∆t xi (θ0 + θnNss) + (1− ρ∆t) [pãi−1 + (1− 2p)ãi + pãi+1]

for i = 2, 3, . . . , I − 1 and

ã1 = ∆t x1 (θ0 + θnNss) + (1− ρ∆t) [(1− p)ã1 + pã2]

ãI = ∆t xI (θ0 + θnNss) + (1− ρ∆t) [pãI−1 + (1− p)ãI ]
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Now we set the equations for v using a. Following a similar derivation we get:

vi,j−1 = max {−c+ ai,j , (1− ρ∆t) [pvi−1,j + (1− 2p)vi,j + pvi+1,j]}

for i = 2, 3, . . . , I − 1, and j = 2, 1, J − 1, and

v1,j−1 = max {−c+ a1,j , (1− ρ∆t) [(1− p)v1,j + pv2,j]}

vI,j−1 = max {−c+ aI,j , (1− ρ∆t) [pvI−1,j + (1− p)vI,j]}

for j = 2, . . . , J − 1 and at the terminal time we impose:

vi,J = vi,T for i = 1, 2, . . . , I

Given v and a we can compute x̄, which correspond to an J dimensional array as:

x̄j = min
{i=1,...,I}

{xi : vi,j = −c+ ai,j} for all j = 1, 2, . . . , J

īj = min
{i=1,...,I}

{i : vi,j = −c+ ai,j} for all j = 1, 2, . . . , J so that

x̄j = xīj for all j = 1, 2, . . . , J

We let X be the set:

X =
{
{xj}Jj=1 : xj = (i− 1)∆x each i = 1, 2, . . . I and j = 1, 2, . . . , J

}
We will use vT = ṽ, the stationary equilibria ṽ given ã as:

ṽi = max {−c+ ãi , (1− ρ∆t) [pṽi−1 + (1− 2p)ṽi + pṽi+1]}

for i = 2, 3, . . . , I − 1 and

ṽ1 = max {−c+ ã1 , (1− ρ∆t) [(1− p)ṽ1 + pṽ2]}

ṽI = max {−c+ ãI , (1− ρ∆t) [pṽI−1 + (1− p)ṽI ]}

A.2 Finite Difference Approximation of KFE for m Given x̄

In this section we derive the finite difference approximation for m(x, t) given the path x̄ =

{x̄j}Jj=1. We let īj the index for which x̄j = xīj for all j.
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mi,j+1 −mi,j

∆t

=
σ2

2

[
mi+1,j − 2mi,j +mi−1,j

(∆x)2

]
− ν

(
mi,j −

1

U

)
for i = 2, 3, . . . , īj − 1

mi,j+1 = 0 for i = īj, . . . , I

and j = 1, 2, . . . , J . We can rewrite the first equation as:

mi,j+1 =
σ2

2

∆t

(∆x)2
[mi+1,j − 2mi,j +mi−1,j]− ν∆t

(
mi,j −

1

U

)
+mi,j for i = 2, 3, . . . , īj − 1

mi,j+1 = 0 for i = īj, . . . , I

Defining q as

q =
σ2

2

∆t

(∆x)2
1

(1− ν∆t)

we can write it as:

m1,j+1 = (1− ν∆t) (qm2,j + (1− q)m1,j) + ν∆t
1

U

mi,j+1 = (1− ν∆t) (qmi+1,j + (1− 2q)mi,j + qmi−1,j) + ν∆t
1

U
for i = 2, 3, . . . , īj − 1

mi,j+1 = 0 for i = īj, . . . , I

and j = 1, 2, . . . , J ,

mi,1 = m0(xi) and i = 1, 2, . . . , I

Given m we can compute the corresponding N , i.e.:

Nj = 1−

(
I∑
i=1

mi,j∆x −m1,j∆x/2−mīj−1,j∆x/2

)
for j = 1, 2, . . . , J

This gives N (x̄;m0).

There is also the corresponding stationary distribution for m̃, given the index īss:

m̃1 = (1− ν∆t) (qm̃2 + (1− q)m̃1) + ν∆t
1

U

m̃i = (1− ν∆t) (qm̃i+1 + (1− 2q)m̃i + qm̃i−1) + ν∆t
1

U
for i = 2, 3, . . . , īss

m̃i = 0 for i = īss, . . . , I
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and

Nss = 1−

(
I∑
i=1

m̃i∆x − m̃1∆x/2− m̃īss−1∆x/2

)

A.3 Computing the Equilibrium Set

In this section we set up the fixed point given an initial condition m0 and terminal value

functions vT = ṽ, aT = ã and DT = aT − vT for some stationary equilibruim. Recall that

F : [0, 1]J → [0, 1]J is defined as in equation (6). Thus, successive paths for N are indexed

by k and computed as

Nk+1 = F
(
Nk;m0, DT

)
≡ N

(
X
(
Nk;DT

)
;m0

)
for k = 0, 1, 2, . . .

for some initial condition N0. To compute the equilibrium with the lowest path for N we

start with the initial condition N0 = {0, 0, . . . , 0}. To compute the equilibrium with the

highest path for N we start with the initial condition N0 = {1, 1, . . . , 1}. The convergence

of Nk for large k is ensured by Tarski’s theorem.

In Figure A1 we compare the computation that follows from discretizing time and state

space with the one that comes from linearizing the model, i.e., our perturbation. Both

computations start with the same initial conditions. For this figure we take as terminal value

function corresponding to the stationary value function corresponding to the high adoption

equilibrium, i.e., high value of Nss and low value of x̄ss. The common initial condition

is one where m0(x) = m̃(x)/2. We make two remarks about the initial condition. First, it

amounts to starting the economy with more agents with the technology than in corresponding

stationary distribution (recall that m̃ is the density of the stationary distribution of agents

without the technology). Second, the shock (deviation from the stationary distribution) is

not a small one, hence the local perturbation might lose accuracy in principle.

The figure contains four lines. The two top lines display the computation of the path of

N based on discretization (label as Global) with the one based on the perturbation (label as

local). The two bottom lines display the computation of the path of x̄ based on discretization

(label as Global) with the one based on the perturbation (label as local). It is apparent

that both methods gives very similar answer, i.e that the linearization is accurate for initial

conditions far away from the stationary distribution. The other feature apparent with these

computations is that the stationary equilibrium is stable even starting far away from the

stationary distribution.
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Figure A1: Global vs Local Solutions

B Proofs and ancillary results

Proof. (of Lemma 2). As a preliminary step we establish a correspondence and inequality

between sample paths of a Brownian Motion with reflected barriers 0 and U but with different

initial conditions. In particular, we can write x(t, α) for each sample path α:

x(t, α) = x(0, α) + σ [W (ω, t)−W (ω, 0)] + u(t, α)− d(t, α)

where ω are the sample path of the standard Brownian Motion denoted by W , where u(·, α)
and d(·, α) are increasing processes in each sample path, where u(s, α) only increases when

x(s, α) = 0, and where d(s, α) only increases when x(s, α) = U for s ∈ [0, t]. Consider any

sample path α for which x(0, α) = x1 with a corresponding sample path ω for the standard

Brownian Motion W . Then there is a corresponding sample path α′ where x(0, α′) = x2,

and with ω = ω′ for W , i.e., the two sample paths correspond to the same path of W . Thus,

these two sample paths occur with the same probability. From the last observation it follows

that we can represent the sample path α by the pair ω, x(0), where x(0) = x(0, α). Finally,

if x1 < x2, comparing these two sample paths we obtain x(t, α′) ≥ x(t, α), i.e., we can pair

the sample paths that start with different initial conditions and that occur with the same

probability, and obtain that the one that starts at a higher value is (weakly) higher for all

future times, and strictly higher for t small enough.

Now we turn to the main result. We proceed by contradiction, assuming that while it is

optimal to adopt at (x1, t), it is not optimal to adopt for (x2, t) with x2 > x1. Without loss
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of generality we assume that t = 0. Our hypothesis imply that for all stopping times with

τ1 > 0 it is not convenient to wait if x(0) = x1, and thus

−c+ E
[∫ ∞

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
≥ (35)

E
[
−ce−ρτ1 +

∫ ∞

τ1

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
.

or equivalently that

−c+ E
[∫ τ1

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
+ cE

[
e−ρτ1 |x(0) = x1

]
≥ 0 .

Likewise, for x(0) = x2 there exists a τ ∗ > 0 for which it is optimal to wait:

−c+ E
[∫ τ∗

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x2

]
+ cE

[
e−ρτ

∗ |x(0) = x2
]
≤ 0 .

We use the characterization for the sample paths described above, to construct a stopping

time that only depends on the path ω as: τ1(ω, x1) = τ ∗(ω, x2) for all ω. Using this equality,

we immediately obtain E [e−ρτ1 |x(0) = x1] = E
[
e−ρτ

∗ |x(0) = x2
]
. Furthermore, using our

characterization above for each path ω, we obtain:

E
[∫ τ1

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x1

]
< E

[∫ τ1

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x2

]
= E

[∫ τ∗

0

e−ρtx(t) (θ0 + θnN(t)) dt |x(0) = x2

]
Using this strict inequality we get a contradiction with equation (35), and hence we establish

the desired result. □

We give a normalization of the primal problem that is useful in the empirical application.

The lemma shows that the problem features five independent parameters, as U and θ0 can

be normalized without affecting the dynamics of the technology diffusion.

Lemma 9. The problem with parameters {c, ρ, ν, σ, θ0, θn, U}, initial conditionm0, f(x) =
1
U

and equilibrium objects {x̄(t), N(t), a(x, t), v(x, t)} for x ∈ [0, U ] and t ∈ (0, T ) is equivalent

to the following normalized problem
{

c
Uθ0

, ρ, ν, σ
U
, 1, θn

θ0
, 1
}
for a normalized variable z ≡ x

U
∈

(0, 1) and t ∈ (0, T ) with initial conditionm0(z) = U m0(x), f(z) = 1 and equilibrium objects{
x̄(t)
U
, N(t), â (z, t) , v̂ (z, t)

}
where â (z, t) ≡ θ0a (zU, t) and v̂ (z, t) ≡ θ0v (zU, t).

Proof. (of Lemma 9). The proof is readily obtained by using the definitions â (z, t) ≡

7



θ0a (zU, t) and v̂ (z, t) ≡ θ0v (zU, t). It is straightforward to verify that these functions satisfy

the partial differential equations for â(z) and v̂(z) for z ∈ (0, 1), including smooth pasting,

value matching and boundary conditions. □

Proof. (of Lemma 2). For this proof we set up the problem as a stopping time problem.

We first prove a useful result in Lemma 10, showing that τ(N ′) ≤ τ(N) if N ′ ≥ N . To

convert the result on the monotonicity of the stopping times, into a result of the threshold x̄,

we note that the optimal decision rule is of the threshold type, as established in Lemma 2.

We also show that exactly the same argument holds for the monotonicity with respect to θ.

These results allow us to apply Topkis’s (1978) theorem, which immediately establishes the

proposition’s result.

Next we set up the problem in terms of stopping times, and then state and prove

Lemma 10. □

Decision Problem as Stopping Times. Fix x0 ∈ [0, U ] and t0 ∈ [0, T ]. Let N ∈
C([t0, T ]) = {N : [t0, T ] → [0, 1]} and τ denote a stopping time. Let Ω denote the sample

paths that start at time t0 with x(t0) = x0. A set Lt0,x0 = {τ : Ω → [t0, T ]} is a lattice since

min{τ1, τ2} and max{τ1, τ2} are stopping times.

Let ω ∈ Ω be a sample path that corresponds to a continuation of (x0, t0) with measure

µ(·|x0, t0). We denote by x(·, ω) : [t0, T ] → [0, U ] the sample path of the process for x that

starts at x(t) = x0. Then the objective function can be written as

F (τ,N ;x0, t0) =

∫
f(τ(ω), x(·, ω), N)µ(dω|x0, t0)

where

f(τ, x(·, ω), N ;x0, t0) =

[∫ T

τ

e−ρtx(t, ω) [θ0 + θnN(t)] dt− e−ρτc

]
where F : Lt0,x0 × C([t0, T ]) → R. We have the following important lemma:

Lemma 10. Let θ ≡ (θ0, θn) ≥ 0 and fix (x0, t0). We establish three properties of

F (τ,N ;x0, t0): (i) it is submodular in τ ; (ii) it has decreasing differences in (τ,N); (iii) it

has decreasing differences in (τ, θ).

Proof. (of Lemma 10). Result (i): Submodularity in τ follows because F is additive across

sample paths for all τ and τ ′. We omit x0, t0 to simplify the notation. Fixing N we want to
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show:

F (max{τ, τ ′}, N)− F (τ,N) ≤ F (τ ′, N)− F (min{τ, τ ′}, N)

which follows because for each sample path ω we have:

f(max{τ, τ ′}, N)− f(τ,N) ≤ f(τ ′, N)− f(min{τ, τ ′}, N).

which holds since: 0 = f(max{τ, τ ′}, N)− f(τ,N)− f(τ ′, N) + f(min{τ, τ ′}, N).

Result (ii): We prove the submodularity of F , namely that given τ ′ > τ and N ′ > N we

have

F (τ ′, N ′)− F (τ,N ′) ≤ F (τ ′, N)− F (τ,N)

To this end consider τ ′(ω) ≥ τ(ω) and compute:

F (τ ′, N)− F (τ,N) =

∫
(f(τ ′, N)− f(τ,N))µ(dω)

and for each ω

f(τ ′, N, ω)− f(τ,N, ω) =

∫ T

τ ′
e−ρt [θ0 + θnN(t)]x(t, ω)dt− e−ρτ

′
c

−
(∫ T

τ

e−ρt [θ0 + θnN(t)]x(t, ω)dt− e−ρτc

)
= −

∫ τ ′

τ

e−ρt [θ0 + θnN(t)]x(t, ω)dt− e−ρτ
′
c+ e−ρτc.

Thus, for all N ′(t) ≥ N(t) and all t

(f(τ ′, N ′, ω)− f(τ,N ′, ω))− (f(τ ′, N, ω)− f(τ,N, ω))

= −
∫ τ ′

τ

e−ρt [θ0 + θnN
′(t)]x(t, ω)dt+

∫ τ ′

τ

e−ρt [θ0 + θnN(t)]x(t, ω)dt

= −θn
∫ τ ′

τ

e−ρt [N ′(t)−N(t)]x(t, ω)dt ≤ 0

Thus

F (τ ′, N ′)−F (τ,N ′)−(F (τ ′, N)−F (τ,N)) = −θn
∫ (∫ τ ′(ω)

τ(ω)

e−ρt [N ′(t)−N(t)]x(t, ω)dt

)
µ(dω) ≤ 0

9



Result (iii): Following the same steps followed in (ii) assuming θ′ > θ gives:

F (τ ′, θ′)−F (τ, θ′)−(F (τ ′, θ)−F (τ, θ)) = −
∫ (∫ τ ′(ω)

τ(ω)

e−ρt [(θ′0 − θ0) + (θ′n − θn)N(t)]x(t, ω)dt

)
µ(dω) ≤ 0

□

Proof. (of Lemma 3) The fraction of agents that have not adopted at time t can be written

as

M(t) ≡
∫ x̄(t)

0

m(z, t)dz =

∫ U

0

m0(x)P (x, 0, t)dx+

∫ U

0

ν

U

∫ t

0

P (x, s, t)ds dx

where

P (x, s, t) = Pr [X(r) ≤ x̄(r), for all r ∈ [s, t] | X(s) = x] e−ν(t−s) (36)

where X(·) is a Brownian motion with reflecting barriers in [0, U ]. Thus P (x, s, t) is the

fraction of agents that at time s have X(s) = x, survive until t, and also have had X(r)

below the threshold x̄(r) at all times r ∈ [s, t]. The first term in equation (36) is the fraction

of those that have not adopted at in the initial distribution, and still have not adopted, and

survive, at time t. The second term keeps tract of those cohort that have died at time s, and

replaced by new agents, and themselves survive and not adopt up to time t.

Consider two paths x̄′ ≥ x̄ and the corresponding probabilities and measure of non-

adopters P ′(x, s, t) and M ′(t) computed with x̄′, and P (x, s, t) and M(t) computed with x̄.

The set of events {X(r) ≤ x̄(r), for all r ∈ [s, t]} is included in the set of events {X(r) ≤
x̄′(r), for all r ∈ [s, t]}, since x̄(r) ≤ x̄′(r), and hence P ′(x, s, t) ≥ P (x, s, t). Thus M ′(t) ≥
M(t). Since N ′(t) = 1 − M ′(t) and N(t) = 1 − M(t), obtaining the desired result that

N ′(t) ≤ N(t).

The monotonicity with respect to m0 follows immediately, since
∫ U
0
m0(x)P (x, 0, t)dx is

increasing in m0 because P (x, 0, t) is non-negative.

□

Proof. (of Theorem 1) The proof uses Tarski’s fixed point theorem for the function F as

defined in equation (6). We restrict attention to the discrete time, discrete state version of

the model so that we can we apply Tarski in a complete lattice.

We note that {N : {0,∆t, . . . , T} → [0, 1]} = [0, 1]J where J is the integer that defines

∆t. This set is a complete lattice. This function is monotone by virtue of Lemma 2 and

Lemma 3. Then, Tarski’s fixed point theorem implies that the set of fixed points is a lattice.
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The comparative static result follows from the properties of the mapping X and N es-

tablished in Lemma 2 and Lemma 3. □

Proof. (of Proposition 1) If an equilibrium without adoption exists, then N(t) = N(0)e−νt,

and hence if someone will adopt, it will adopt at time t = 0. Moreover, if someone will adopt

it will be the one with x = U . Thus, we compute the value of N such that:

c = E
[∫ ∞

0

e−ρtx(t) [θ0 + θnN(t)] dt|x(0) = U

]
= θ0E

[∫ ∞

0

x(t)e−ρtdt|x(0) = U

]
+ θnN(0)E

[∫ ∞

0

x(t)e−(ρ+ν)tdt|x(0) = U

]
We note that ã(x; q) = E

[∫∞
0
x(t)e−qtdt|x(0) = x

]
solves the o.d.e. qã(x) = 1 + ã′′(x) with

boundary conditions ã′(0) = ã′(U) = 0. The solution of this o.d.e. is:

ã(x; q) =
1

q

[
x+ Ā1e

ηx + Ā2e
−ηx]

Ā1 ≡
1

η

(
1− e−ηU

)
(e−ηU − eηU)

, Ā2 ≡
1

η

(
1− eηU

)
(e−ηU − eηU)

and η ≡
√

2q/σ2

Evaluating ã(x; q) at x = U we get:

ã(U ; q) =
1

q

[
U − coth(ηU)

η
+

csch(ηU)

η

]
Using this in the expression for N we obtain the desired expression. □

Proof. (of Lemma 4) The monotonicity of Xss with respect to the parameters θ̄ss ≡ (θ0 +

θnN)/ρ is established in Appendix B.1. It is obtained by solving the o.d.e. for the value

functions, and using the boundary conditions. It is clear that the optimal threshold, fixing η,

solves an implicit equation ψ(γx̄ss) = ηc/θ̄ss, where the function ψ is derived in Appendix B.1.

This function is strictly increasing, and satisfies ψ(0) = 0. Thus Xss is strictly decreasing in

θ̄ss and strictly increasing in c. A first order approximation of ψ gives the expansion used in

the lemma. □

Proof. (of Lemma 5) That Nss is decreasing in x̄ follows immediately since tanh(z) is, for

positive z, concave and has tanh′(0) = 1. Thus Nss(x̄) =
1
U
(−1 + tanh(x̄γ)) < 0 if x̄ > 0.

That Nss is strictly decreasing in γ follows from differentiating tanh(x̄γ)/γ with re-

spect to γ. This derivative is proportional to −(tanh(x̄γ) − x̄γsech2(x̄γ)) = −(tanh(x̄γ) −
x̄γ tanh′(x̄γ)) < 0, where we used that tanh(z) is strictly concave for z > 0. □
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Proof. (of Proposition 2). In the deterministic case, i.e., when σ = 0, there are at most

two interior stationary equilibrium (the case we focus on). To simplify the notation let

N o(x̄ss) ≡ X−1
ss (x̄ss) and N

a(x̄ss) ≡ Nss(x̄ss). In each of the stationary equilibrium we write

Na
(
x̄j(c)

)
= N o

(
x̄j(c), c

)
(37)

where j = {H,L} (for high and low adoption, with x̄H < x̄L).

The functions Na and N o and their derivatives are continuous functions of x̄ss, σ, c, θ0.

In each of the stationary equilibrium the functions Na and N o have strictly different slopes.

Some analysis shows that the functions Na, N o intersect twice, and the derivative of Na−N o

with respect to x̄ss is positive when the curves intersect at x̄Hss and negative when the curves

intersect at the x̄Lss. We summarize this by writing Na
x̄ (x̄

H
ss)−N o

x̄(x̄
H
ss) > 0 while the derivative

is negative at x̄Lss.

Note that c does not enter in Na. Differentiating equation (37) with respect to c:

[Na
x̄ (x̄(c))−N o

x̄ (x̄(c), c)]
∂x̄(c)

∂c
= N o

c (x̄(c), c) > 0

and again using the properties of each stationary equilibrium:

∂x̄Hss
∂c

> 0 >
∂x̄Lss
∂c

Following exactly the same steps we get:

∂x̄Lss
∂θ0

> 0 >
∂x̄Hss
∂θ0

□

B.1 Solution for ã(x) and ṽ(x)

The solution to ã is of the form:

ã(x) = x
θ0 + θnNss

ρ
+ A1e

ηx + A2e
−ηx

for η =
√

2ρ/σ2, and

0 =
θ0 + θnNss

ρ
+ η(A1 − A2) =

θ0 + θnNss

ρ
+ η(A1e

ηU − A2e
−ηU)

12



Thus, given θ0 + θnNss, the constants (A1, A2) are the solution of two linear equations.

Moreover, the values of A1, A2 are proportional to θ̄ss given by

θ̄ss ≡
θ0 + θnNss

ρ
= η(A2 − A1) = η(A2e

−ηU − A1e
ηU)

Let Āi ≡ Ai/θ̄ss, we can write:

1 = η(Ā2 − Ā1) = η(Ā2e
−ηU − Ā1e

ηU)

which has solution:

Ā1 =
1

η

(
1− e−ηU

)
(e−ηU − eηU)

, Ā2 =
1

η

(
1− eηU

)
(e−ηU − eηU)

The solution for ṽ for x ∈ [0, x̄ss] is of the form

ṽ(x) = B1e
ηx +B2e

−ηx

Given the solution for ã, then B1, B2, x̄ss solve:

0 = η(B1 −B2)

ãx(x̄ss) = η(B1e
ηx̄ss −B2e

−ηx̄ss)

ã(x̄ss)− c = B1e
ηx̄ss +B2e

−ηx̄ss

Thus, using the first equation B1 = B2 = B and taking the ratio of these equations:

ã(x̄ss)− c

ãx(x̄ss)
=

1

η

eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)

Replacing the expressions for ã(x̄ss) and ã
′(x̄ss), we obtain:

x̄ss + Ā1e
ηx̄ss + Ā2e

−ηx̄ss − c/θ̄ss

1 + η
(
Ā1eηx̄ss − Ā2e−ηx̄ss

) =
1

η

eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)

Note that this is one equation for x̄ss as a function of θ̄ss (recall that Ā1, Ā2 are known

constants). The last expression can be written as

ηx̄ss + ηĀ1e
ηx̄ss + ηĀ2e

−ηx̄ss − eηx̄ss + e−ηx̄ss

(eηx̄ss − e−ηx̄ss)

(
1 + η

(
Ā1e

ηx̄ss − Ā2e
−ηx̄ss

))
=

η

θ̄ss
c

13



which gives equation (16) in the main text.

Letting y ≡ ηx̄ss and defining ψ(y) we can write

ψ(y) ≡ y + η
(
Ā1e

y + Ā2e
−y)− ey + e−y

(ey − e−y)

(
1 + η

(
Ā1e

y − Ā2e
−y))

=
η

θ̄ss
c

We can approximate the left hand side around x̄ss = 0, which corresponds to c = 0. Using

that ηĀ2 = ηĀ1 + 1, we have the following properties.

1. ψ(0) = 0, ψ(y) > 0 if y > 0

2. ψ′(y) = e2y+1
(ey+1)2

so ψ′(0) = 1
2
, ψ′(∞) = 1, and ψ′′(y) > 0,

3. ψ(y) = y
2
+ y3

24
+ o(y4) and limy→∞

ψ(y)−y
y

= 0

Now we use ψ to solve for x̄ss = χ(η, c/θ̄ss) i.e.
ηc
θ̄ss

= ψ(ηχ(η, c/θ̄ss)). x̄ss is the unique

solution of ψ(ηx̄ss)
η

= c
θ̄ss

, which always exists. For fixed 0 < η <∞ and small c using the first

order approximation:

y = ηx̄ss = 2
ηc

θ̄ss
or x̄ss = 2

c

θ̄ss

since η =
√
2ρ
σ

the option value for a fixed θ̄ is given by:

lim
c→0

χ(η, c/θ̄ss)

χ(∞, c/θ̄ss)
= 2

For fixed 0 < η <∞ and small c, using the third order approximation y3+12y = κ̂ ≡ 24ηc
θ̄ss

or:

x̄ss =
1

η

(
1

2
κ̂+

√
1

4
κ̂2 +

123

27

)1/3

+
1

η

(
1

2
κ̂−

√
1

4
κ̂2 +

123

27

)1/3

=
1

η

(
1

2

)1/3 [(
κ̂+

√
κ̂2 + 16

)1/3
+
(
κ̂−

√
κ̂2 + 16

)1/3]
For the case when σ is small (i.e., η is large), let S(y) ≡ y − ψ(y) + 1 and recall that

limy→∞ S(y) = 0. Then, using the definitions of y and ψ(y), this implies

lim
σ→0

√
2ρ

σ

(
χ

(
∞,

c

θ̄ss

)
− c

θ̄ss
− σ√

2ρ

)
= 0
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Thus, for σ small we can use:

x̄ss =
c

θ̄ss
+

σ√
2ρ

+ o(σ)

Alternatively, note that x̄ss − σ√
2ρ

is the derivative of ψ(ηx̄ss)
η

with respect to σ evaluated at

σ = 0.

B.2 Solution for m̃(x)

We can write the solution of the KFE as the sum the two homogeneous and the particular

solution mp, given x̄ss, i.e.

m̃(x) = C1e
γx + C2e

−γx +mp(x)

where γ =
√

2ν/σ2. The solution is

m̃(x) =
1

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
for x ∈ [0, x̄ss]

Finally, we want to compute:

1−Nss =

∫ x̄ss

0

m̃(x)dx =

∫ x̄ss

0

1

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
dx

This gives another equation for x̄ss as function of θ̄.

C Perturbation of the Stationary Equilibrium

We study the evolution of the MFG where the initial condition is given by a small perturbation

ϵ of the stationary distribution:

m0(x) = m̃(x) + ϵ ω(x) . (38)

We consider an equilibrium with {x̄(t, ϵ), N(t, ϵ), D(x, t, ϵ),m(x, t, ϵ)}. We will linearize this

equilibrium with respect to ϵ and evaluate it at ϵ = 0. For all t ∈ [0, T ], we denote these

derivatives as follows:
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p(x, t) ≡ ∂

∂ϵ
m(x, t, ϵ)

∣∣∣∣
ϵ=0

d(x, t) ≡ ∂

∂ϵ
D(x, t, ϵ)

∣∣∣∣
ϵ=0

n(t) ≡ ∂

∂ϵ
N(t, ϵ)

∣∣∣∣
ϵ=0

ȳ(t) ≡ ∂

∂ϵ
x̄(t, ϵ)

∣∣∣∣
ϵ=0

C.1 Linearization and Solution of the KB Equation

We differentiate D(x, t, ϵ) with respect to ϵ at each (x, t) to obtain d(x, t) which solves the

following p.d.e

ρd(x, t) = xθnn(t) +
σ2

2
dxx(x, t) + dt(x, t) (39)

for x ∈ [0, x̄ss] and t ∈ [0, T ]. The boundary conditions are obtained by differentiating the

boundaries in equation (10) with respect to ϵ. This gives:

d(x̄ss, t) = 0

D̃xx(x̄ss)ȳ(t) + dx(x̄ss, t) = 0 (40)

dx(0, t) = 0

for t ∈ [0, T ] and d(x, T ) = 0 for x ∈ [0, x̄ss]. Note that equation (40) defines ȳ(t) and that

D̃xx(x̄ss) = ãxx(x̄ss)− ṽxx(x̄ss) < 0.

Taking the derivative of the solution for d(x, t) in equation (39) with respect to x and

combining it with equation (40) we find

ȳ(t) =
θn

D̃xx(x̄ss)

∫ T

t

G(τ − t)n(τ)dτ (41)

where G(s) ≡
∑∞

j=0 cje
−ψjs ≥ 0 for s ≥ 0, ψj ≡ ρ + σ2

2

(
π( 1

2
+j)

x̄ss

)2
, and cj ≡ 2

(
1− cos(πj)

π(j+ 1
2
)

)
.

An important property of this is that, since G(s) ≥ 0 and D̃xx(x̄ss) < 0, an increase in future

adoption of the technology (i.e., future values of n(τ) > 0 for τ > t), then the threshold

for adoption is smaller (i.e., more people will adopt today). Next we provide details of the

solution of the p.d.e. for d. We have
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Lemma 11. The solution for the KBE equation for d, satisfying the p.d.e. in equation (39),

and the boundary conditions in equation (40), is given by

d(x, t) =
∞∑
j=0

φj(x)d̂j(t) for x ∈ [0, x̄ss] and t ∈ [0, T ]

where for all j = 1, 2, ... we have:

φj(x) ≡ sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss]

d̂j(t) ≡
∫ T

t

e−ψj(τ−t)ẑj(τ)dτ for t ∈ [0, T ]

ẑj(t) ≡ θnn(t)
⟨φj, x⟩
⟨φj, φj⟩

= θnn(t)
2x̄ss(

1
2
+ j
)
π

(
1− cos(πj)

π(j + 1
2
)

)
for t ∈ [0, T ]

where ψj ≡ ρ+
σ2

2

(
π(1

2
+ j)

x̄ss

)2

and d̂j(T ) = 0

where ⟨φj, h⟩ ≡
∫ x̄ss
0

h(x)φj(x)dx. The proof can be done by verifying that the equation

holds at the boundaries, and that for t > 0 the p.d.e in equation (39) holds in the interior

since ∂xxφj(x) = −
(
π( 1

2
+j)

x̄ss

)2
φj(x), and ∂td̂j(t) = ψj d̂j(t)−ẑj(t) for t ∈ [0, T ] and j = 1, 2, ...,

and since the {φj(x)} form an orthogonal basis for functions. Note finally that the boundary

holds at t = 0 for x ∈ [0, x̄ss], and that the derivative of the solution for d, used to solve for

ȳ in equation (40), is

dx(x̄ss, t) = −θn
∫ T

t

∞∑
j=0

cje
−ψj(s−t)n(s)ds where cj ≡ 2

(
1− cos(πj)

π(j + 1
2
)

)
.

C.2 Linearization and Solution of the KF Equation

We differentiate the KFE for m(x, t, ϵ) with respect to ϵ at each (x, t) to obtain:

pt(x, t) =
σ2

2
pxx(x, t)− νp(x, t) (42)

for x ∈ [0, x̄ss] and t ∈ [0, T ].

Differentiating the boundary conditionsm(x̄(t, ϵ), t, ϵ) = 0 andmx(0, t, ϵ) = 0 with respect
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to ϵ we get

m̃x(x̄ss)ȳ(t) + p(x̄ss, t) = 0 (43)

px(0, t) = 0

The initial condition comes from differentiating m0(x) with respect to ϵ

p(0, x) = ω(x) (44)

The solution for p satisfies the p.d.e given in equation (42), its boundary conditions in

equation (43), and the initial condition in equation (44). We have

Lemma 12. The solution for the KFE equation for p, satisfying the p.d.e given in equa-

tion (42), the boundary conditions in equation (43), and the initial condition in equation (44),

is given by

p(x, t) =
∞∑
j=0

φj(x)p̂j(t) + r(t) for x ∈ [0, x̄ss] and t ∈ [0, T ]

r(t) ≡ − m̃x(x̄ss) ȳ(t) for t ∈ [0, T ]

where for all j = 1, 2, ... we have:

p̂j(t) ≡ p̂j(0)e
−µjt +

∫ t

0

e−µj(t−τ)q̂j(τ)dτ for t ∈ [0, T ]

q̂j(t) ≡ −(r′(t) + νr(t))
⟨1, φj⟩
⟨φj, φj⟩

for t ∈ [0, T ]

φj(x) ≡ sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss]

where p̂j(0) =
⟨φj, ω − r(0)⟩

⟨φj, φj⟩
and µj ≡ ν +

σ2

2

(
π(1

2
+ j)

x̄ss

)2

where ⟨φj, h⟩ ≡
∫ x̄ss
0

h(x)φj(x)dx. The proof can be done by verifying that the equations

hold at the boundaries, that for t > 0 the p.d.e holds in the interior since

p̂′j(t) = −µj p̂j(t) + q̂j(t) for t ∈ [0, T ] and j = 1, 2, ...

and since {φj(x)} form an orthogonal bases for functions, and finally that the boundary

holds at t = 0 for x ∈ [0, x̄ss], and it holds at x = x̄ss for every 0 < t < T
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Given p(x, t) we can compute n(t) as:

n(t) = −
∫ x̄ss

0

p(x, t)dx

= n0(t) +
m̃x(x̄ss)σ

2

x̄ss

∫ t

0

J(t− τ)ȳ(τ)dτ (45)

where J(s) =
∑∞

j=0 e
−µjs with µj = ν + 1

2
σ2
(
π( 1

2
+j)

x̄ss

)2
and n0(t) ≡ −

∑∞
j=0

x̄ss
π( 1

2
+j)

⟨φj ,ω⟩
⟨φj ,φj⟩e

−µjt.

C.3 Equilibrium in the Perturbed MFG

Recall that from equation (41), ȳ(t) is equal to

ȳ(t) =
θn

D̃xx(x̄ss)

∫ T

t

G(τ − t)n(τ)dτ

where G(s) ≡
∑∞

j=0 cje
−ψjs for s ≥ 0. From equation (45) we also know that n(t) is

n(t) = n0(t) +
m̃x(x̄ss)σ

2

x̄ss

∫ t

0

J(t− τ)ȳ(τ)dτ

where J(s) =
∑∞

j=0 e
−µjs and n0(t) ≡ −

∑∞
j=0

x̄ss
π( 1

2
+j)

⟨φj ,ϵ⟩
⟨φj ,φj⟩e

−µjt. Combining equation (41)

and equation (45) we get

n(t) = n0(t) + Θ(x̄ss)

∫ t

0

∫ T

τ

J(t− τ)Ḡ(s− τ)n(s)dsdτ

= n0(t) + Θ(x̄ss)

∫ T

0

∫ min{s,t}

0

J(t− τ)G(s− τ)n(s)dsdτ

= n0(t) + Θ(x̄ss)

∫ T

0

K(t, s)n(s)ds

where K(t, s) =
∫ min{s,t}
0

J(t− τ)Ḡ(s− τ)dτ and Θ(x̄ss) ≡ m̃x(x̄ss)σ2θn
x̄ssD̃xx(x̄ss)

. Using the definitions
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of J(s) and G(s) we find

K(t, s) =

∫ min{s,t}

0

J(t− τ)G(s− τ)dτ

=

∫ min{s,t}

0

(
∞∑
j=0

e−µj(t−τ)

)(
∞∑
j=0

cje
−ψj(s−τ)

)
dτ

=
∞∑
j=0

∞∑
j=0

cje
−µit−ψjs

∫ min{s,t}

0

e(µi+ψj)τdτ

=
∞∑
i=0

∞∑
j=0

cje
−µit−ψjs

[
e(µi+ψj)min{t,s} − 1

µi + ψj

]
.

Note that K(t, t) =
∑∞

i=0

∑∞
j=0 cj

[
1−e−(µi+ψj)t

µi+ψj

]
.

To calculate the Lipschitz bound LipK ≡ supt∈[0,T ]
∫ T
0
|K(t, s)|ds, let

κij(t) ≡
∫ T

0

e−µit−ψjs(e(µi+ψj)min{t,s} − 1)

so that ∫ T

0

K(t, s)ds =
∞∑
i=0

∞∑
j=0

cj
κij(t)

µi + ψj
.

Computing the integrals in κij(t) we get

κij(t) =

∫ t

0

e−µit−µisds+

∫ T

t

e−ψjt−ψjsds−
∫ T

0

e−µit−ψjsds

=
e−µit(eµit − 1)

µi
+
eψjt(e−ψjT − e−ψjt)

−ψj
− e−µit(e−ψjT − 1)

−ψj

=

(
ψj + µi
ψjµj

)
(1− e−µit) + e−ψjT (e−µit − eψjt)

and as T → ∞

κij(t) =

(
ψj + µi
ψjµj

)
(1− e−µit)

≤ ψj + µi
ψjµi

.
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Using that
∫ T
0
|K(t, s)|ds ≤

∫∞
0

|K(t, s)|ds we get

∫ T

0

K(t, s)ds =
∞∑
i=0

∞∑
j=0

cj
κij(t)

µi + ψj

≤
∞∑
i=0

∞∑
j=0

cj
1

µiψj

=

(
∞∑
i=0

1

µi

)(
∞∑
j=0

cj
ψj

)
.

We can use the definitions of µj, ψj, and cj to further simplify this expression. First note

that

∞∑
i=0

1

µi
=

∞∑
i=0

1

ν + 1
2
σ2
(
π( 1

2
+j)

x̄ss

)2
≤ 2x̄2ss

σ2

∞∑
i=0

1(
π(1

2
+ j)

)2
=
x̄2ss
σ2

where we obtain the bound for ν = 0. Notice also that

∞∑
j=0

cj
ψj

=
∞∑
j=0

2
(
1− cos(πj)

π(j+ 1
2
)

)
ρ+ 1

2
σ2
(
π( 1

2
+j)

x̄ss

)2
≤ 4x̄2ss

σ2

∞∑
j=0

(
1− cos(πj)

π(j+ 1
2
)

)
(
π(1

2
+ j)

)2
=

4x̄2ss
σ2

∞∑
j=0

(
1(

π(1
2
+ j)

)2 − (−1)j(
π(1

2
+ j)

)3
)

=
4x̄2ss
σ2

∞∑
j=0

(
1

2
− 1

4

)
=
x̄2ss
σ2
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where the bound is obtained for ρ = 0. Putting these together we find the Lipschitz bound

LipK ≡ sup
t∈[0,T ]

∫ T

0

K(t, s)ds ≤

(
∞∑
i=0

1

µi

)(
∞∑
j=0

cj
ψj

)

=

(
x̄2ss
σ2

)2

.

A sufficient condition for the existence and uniqueness of the equilibrium IRF, i.e., of the

uniqueness and existence of a solution to equation (23) is that |Θ(x̄ss)|LipK < 1. To establish

a bound for Θ(x̄ss), in terms of the fundamental model parameters, that ensures existence

and uniqueness, we use the definition of Θ(x̄ss) and the Lipschitz bound as follows:

Θ(x̄ss)
( x̄ss
σ2

)2
=
m̃x(x̄ss)σ

2θn

x̄ssD̃xx(x̄ss)

(
x̄2ss
σ2

)2

=
m̃x(x̄ss)θnx̄

3
ss

D̃xx(x̄ss)σ2

=
θn(γx̄ss)

2

2U

tanh(γx̄ss)(
θ0 + θn

(
1− γx̄ss

γU
+ tanh(γx̄ss)

γU

))
γx̄ss − ρcγ

where we obtained Dxx(x̄ss) evaluating equation (9) at x̄ss and using equation (17), and we

calculate m̃x(x̄ss) from m̃(x) = 1
U

(
1− cosh(γx)

cosh(γx̄ss)

)
.

D Planning Problem

This section collects several results used to analyze the planning problem.

D.1 Planning Problem, stationary case

A stationary equilibrium is characterized by two constants Nss and x̄ss that solve the time

invariant version of the p.d.e. stated in Section 5. The p.d.e. for non-adopters in the
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stationary case becomes the following o.d.e.:

ρλ̃(x) = x
(
θ0 + θnNss

)
+ θnZss +

σ2

2
λ̃xx(x) if x ≤ x̄ss KBE

λ̃(x̄ss) = c FOC

λ̃x(x̄ss) = 0 Smooth Pasting

λ̃x(0) = 0 Reflecting

0 = −νm̃(x) + νf(x) +
σ2

2
m̃xx(xx) if x ≤ x̄ss KFE

m̃(x̄ss) = 0 and m̃x(0) = 0

and given m̃ and x̄ss, Nss and Zss are defined as:

Nss = 1−
∫ x̄ss

0

m̃(x)dx

Zss = U/2−
∫ x̄ss

0

xm̃(x)dx

Recall that λ̃(x̄ss) is the Lagrange multiplier of the law of motion of the density of agents

that have not adopted for the stationary case. The details of the solution can be found in

Appendix D.4. The following proposition summarizes the solution of planning problem at a

stationary distribution.

Proposition 3. Let θ̃ss ≡ 1
ρ
(θ0+θnNss) and η ≡

√
2ρ/σ2. For fixed 0 < η <∞ and small

c, x̄ss = 2
(

c
θ̃ss

− θnZss
ρθ̃ss

)
. For the case when σ is small (i.e., η is large), x̄ss =

c
θ̃ss

− θnZss
ρθ̃ss

+ σ√
2ρ

Proposition 3 indicates that the solution of the stochastic version of the planning problem

also has the option value present in the equilibrium. This proposition can be used to show

that the stationary level of adoption in the planning problem is higher than the adoption

level of the the high-activity stationary equilibrium.

D.2 Dynamics of N and Flow of Adoption Cost

Recall that

N(t) = 1−
∫ x̄(t)

0

m(x, t)dx.
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Taking the derivative with respect to time

Nt(t) = − d

dt

∫ x̄(t)

0

m(x, t)dx

= −m(x̄(t), t)︸ ︷︷ ︸
=0

dx̄(t)

dt
−
∫ x̄(t)

0

mt(x, t)dx

where the first term is zero because of the exit point of the distribution of non-adopters.

Using the law of motion of m

Nt(t) = −
∫ x̄(t)

0

(
−νm(x, t) + νf(x) +

σ2

2
mxx(x, t)

)
dx

= ν

∫ x̄(t)

0

m(x, t)− νx̄(t)

U
− σ2

2

∫ x̄(t)

0

mxx(x, t)dx

= ν (1−N(t))− νx̄(t)

U
− σ2

2

mx(x̄(t), t)︸ ︷︷ ︸
<0

−mx(0, t)︸ ︷︷ ︸
=0



where the last term is zero from our assumption of reflecting barriers. Let the adoption cost

per unit of time A(t) be defined as

A(t) ≡ c (Nt(t) + νN(t))

= c

(
ν (1−N(t))− νx̄(t)

U
− σ2

2
mx(x̄(t), t) + νN(t)

)
= c

(
ν

(
1− x̄(t)

U

)
− σ2

2
mx(x̄(t), t)

)
where the first term are the agents that are replaced with x ≥ x̄(t). The second term are

the agents that hit x̄(t) from below per unit of time so they pay c and adopt the technology.

D.3 Derivation of the PDE’s for the Planner’s Problem

To derive the problem in continuous time, we write the adoption problem in a discrete-

time discrete-state setup. We do so by using the finite-difference approximation and then

considering the planning problem in that set-up. We obtain the first order conditions for a

problem in finite dimensions. Lastly, we take the limit to develop the corresponding p.d.e’s.

First we derive the finite difference approximation for a Brownian motion reflected be-
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tween two barriers. The time step is ∆, so that times are between t = 0,∆, 2∆, . . . . The

space step is ∆x, so that x ∈ {x1, x2, . . . , xI}, where x1 = 0, xJ = U and xi+1−xi = ∆x. The

p.d.e. inside the barriers is

mt(x, t) = −νm(x, t) + νf(x) +
σ2

2
mxx(x, t)

Its finite difference approximation is:

mi,t+∆ −mi,t

∆
= −νmi,t + νfi +

σ2

2

(mi+1,t − 2mi,t +mi−1,t)

(∆x)2

for i = 2, . . . , I − 1. We can write the finite difference approximation as:

mi,t+∆ = mi,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fiν∆

+
σ2

2

∆

(∆x)2
mi+1,t +

σ2

2

∆

(∆x)2
∆mi−1,t

For the finite approximation, we have that since the law of motion must be local, and mean

preserving:

m1,t+∆ = m1,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ f1ν∆

+
σ2

2

∆

(∆x)2
m2,t +

σ2

2

∆

(∆x)2
m1,t

mI,t+∆ = mI,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fIν∆

+
σ2

2

∆

(∆x)2
mI−1,t +

σ2

2

∆

(∆x)2
mI,t

We can write the l.o.m. at the boundaries as:

m1,t+∆ = m1,t (1− ν∆) + f1ν∆+
σ2

2

∆

∆x

(m2,t −m1,t)

∆x

mI,t+∆ = mI,t (1− ν∆) + fIν∆+
σ2

2

∆

∆x

(mI−1,t −mI,t)

∆x

At the reflecting boundaries x = 0 and x = U , the boundary conditions is mx(x, t) = 0.

Note that as ∆x → 0 we require that

(mI−1,t −mI,t)

∆x

=
(m2,t −m1,t)

∆x

→ 0
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Now we get back to the planning problem. We will have two measures, {mi,t} and {gi,t}.
mi,t is the measures of those that have not adopted and gi,t the measure of those that have

adopted. Let αit ≥ 0 be the measure of adopting at t with x = xi at t. Thus at time t, the

measure αi,t is transferred from the measure mi,t to the measure gi,t. Note that mi,t+gi,t =
1
I

since the sum of the two is the invariant (uniform) distribution. The initial conditions are

gi,0 = 0 ∀i and mi,0 =
1
I
all non-adopters. The law of motion of the state is then:

0 ≤ m1,t+∆ = m1,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fν∆

+
σ2

2

∆

(∆x)2
m2,t +

σ2

2

∆

(∆x)2
m1,t − α1,t

0 ≤ mi,t+∆ = mi,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fν∆

+
σ2

2

∆

(∆x)2
mi+1,t +

σ2

2

∆

(∆x)2
∆mi−1,t − αi,t for i = 2, . . . , I − 1

0 ≤ mI,t+∆ = mI,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+ fν∆

+
σ2

2

∆

(∆x)2
mI−1,t +

σ2

2

∆

(∆x)2
mI,t − αI,t

which can be written in vector notation as:

mt+1 = Lmt − αt ≥ 0

where L is an I × I stochastic matrix which depends on I, ν, σ2,∆ and ∆x. We assume that

∆ (ν + (σ/∆x)
2) < 1 so that all implied probabilities are positive.

max
{αt,mt+∆}∞t=0

∑
{t=0,∆,2∆,... }

(
1

1 + ∆r

)t{
U(mt)∆ −

I∑
i=1

αitc

}

where

U(mt) ≡
I∑
i=1

(
1

I
−mit

)(
θ0 + θn

[
1−

I∑
j=1

mj,t

])
xi

subject to the law of motion:

mt+1 = Lmt − αt for all t = 0,∆, 2∆, . . .
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and subject to non-negativity:

mj,t+1 ≥ 0 and αj,t ≥ 0 for all j = 1, . . . , I, and for all t = 0,∆, 2∆, . . .

Let
(

1
1+∆r

)t
λit be Lagrange multiplier of the law of motion for mit. Let Li be the i

th row

vector of the matrix L . The Lagrangian L becomes:

L =
∑

{t=0,∆,... }

(
1

1 + ∆r

)t{
U (mt)∆−

I∑
i=1

αitc

}

+
∑

{t=0,∆,... }

(
1

1 + ∆r

)t{ I∑
i=1

λit (mi,t+∆ − Li ·mt + αit)

}

The derivative of Lagrangian with respect to αit gives:

∂L
∂αjt

=

(
1

1 + ∆r

)t
[λj,t − c]

The derivative of Lagrangian with respect to mjt for 2 ≤ j ≤ I − 1 gives:

∂L
∂mj,t

=

(
1

1 + ∆r

)t
∂U (mt)

∂mj,t

∆

+

(
1

1 + ∆r

)t [
λj,t−∆(1 + ∆r)− λj,t

(
1− ν∆− σ2 ∆

(∆x)2

)]
−
(

1

1 + ∆r

)t
σ2

2

∆

(∆x)2
[λj+1,t + λj−1,t]

where

∂U (mt)

∂mjt

=− xj

(
θ0 + θn

(
1−

I∑
i=1

mi,t

))
− θn

I∑
i=1

(
1

I
−mit

)
xi

= −xj (θ0 + θnNt)− θn

(
U

2
−

I∑
i=1

mitxi

)

We can write mjt for 2 ≤ j ≤ I − 1:(
1

1 + ∆r

)−t
∂L
∂mjt

=
∂U (mt)

∂mjt

∆+ λj,t−∆(1 + ∆r)

− λj,t

(
1− ν∆− σ2 ∆

(∆x)2

)
− σ2

2

∆

(∆x)2
[λj+1,t + λj−1,t]
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and rearranging:

(1 + ∆r)λj,t−∆ =

(
1

1 + ∆r

)−t
∂L
∂mjt

− ∂U (mt)

∂mjt

∆

+ λj,t

(
1− ν∆− σ2 ∆

(∆x)2

)
+
σ2

2

∆

(∆x)2
[λj+1,t + λj−1,t]

dividing by ∆ and further rearranging the expressions:

(r + ν)λj,t−∆ =

(
1

1 + ∆r

)−t
1

∆

∂L
∂mjt

− ∂U (mt)

∂mjt

− ν (λj,t − λj,t−∆)

+

(
λj,t − λj,t−∆

∆

)
+
σ2

2

(
λj+1,t − 2λj,t + λj−1,t

(∆x)2

)
For the bottom boundary j = 1 we have:(

1

1 + ∆r

)−t
∂L
∂m1t

=
∂U (mt)

∂m1t

∆+ λ1,t−∆(1 + ∆r)

− λ1,t

(
1− ν∆− σ2 ∆

(∆x)2

)
− σ2

2

∆

(∆x)2
[λ1,t + λ2,t]

(r + ν)λ1,t−∆ =

(
1

1 + ∆r

)−t
1

∆

∂L
∂m1t

− ∂U (mt)

∂m1t

− ν (λ1,t − λ1,t−∆)

+

(
λ1,t − λ1,t−∆

∆

)
+
σ2

2

1

∆x

(
λ2,t − λ1,t

∆x

)
For the top boundary j = I:

(r + ν)λI,t−∆ =

(
1

1 + ∆r

)−t
1

∆

∂L
∂mIt

− ∂U (mt)

∂mIt

− ν (λI,t − λI,t−∆)

+

(
λI,t − λI,t−∆

∆

)
+
σ2

2

1

∆x

(
λI−1,t − λI,t

∆x

)
Thus the limit as ∆ ↓ 0 and ∆x ↓ 0 is that

λx(0, t) = λx(U, t) = 0

The first order condition with respect to αit for t = 0,∆, . . . and j = 1, . . . , I gives:

λj,t − c ≤ 0 , αjt ≥ 0 and , αj,t [λj,t − c] = 0

28



The first order condition with respect to mjt for t = ∆, 2∆, . . . and j = 1, . . . , I gives:

∂L
∂mjt

≤ 0 , mjt ≥ 0 and mjt
∂L
∂mjt

= 0

Note that as ∆ ↓ 0 and ∆x ↓ 0 and x = xj we have

∂U (mt)

∂mjt

→ x(θ0 + θnN(t)) + θn

(
U

2
−
∫ U

0

m(z, t)z dz

)
Consider a xj = x for j = 2, . . . , I − 1 or 0 < x < U . Take the f.o.c. for mj,t derived

above and assume that ∂L
∂mjt

= 0. Take the limit as ∆ ↓ 0 and ∆x ↓ 0:

(r + ν)λ(x, t) = x(θ0 + θnN(t)) + θn

(
U

2
−
∫ U

0

m(z, t)z dz

)
+ λt(x, t) +

σ2

2
λxx(x, t)

If instead ∂L
∂mjt

≤ 0, then

(r + ν)λ(x, t) ≤ x(θ0 + θnN(t)) + θn

(
U

2
−
∫ U

0

m(z, t)z dz

)
+ λt(x, t) +

σ2

2
λxx(x, t)

We derive the smooth pasting condition here. Suppose that at t we have λi,t = c for all

i ≥ j, i.e., for all x ≥ x̄(t), or λ(x, t) < c for x < x̄(t) and λ(x, t) = c for x ≥ x̄(t). Assume

also mj,t > 0 and mj−1,t > 0, so that ∂L/∂m = 0 for both. Then we can write the f. o.c. as:

(r + ν)c = −∂U (mt)

∂mjt

− ν (c− λj,t−∆)

+

(
c− λj,t−∆

∆

)
+
σ2

2

1

∆x

(
c− 2c+ λj−1,t

∆x

)
Taking the limit as ∆x ↓ 0 we have: λx(x̄(t), t) = 0 .

In summary, a planner’s problem is given by {x̄(t), λ(x, t),m(x, t)}, namely the path of

the optimal threshold (so that adoption occurs for x ≥ x̄(t)), the Lagrange multiplier λ, and
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the density of non-adopters m, respectively, such that the p.d.e. for the non-adopters is:

mt(x, t) = ν
(
1/U −m(x, t)

)
+ σ2

2
mxx(x, t) for x < x̄(t) and t ≥ 0

m(x, t) = 0 for x ≥ x̄(t) and t ≥ 0

mx(0, t) = 0 for t ≥ 0

The p.d.e. for the non-adopters:

ρλ(x, t) = x
(
θ0 + θn[1−

∫ x̄(t)

0

m(z, t)dz]
)
+ θn

(
U
2
−
∫ x̄(t)

0

m(z, t)z dz
)

+ σ2

2
λxx(x, t) + λt(x, t) for x ≤ x̄(t) and t ≥ 0

λ(x, t) = c for x ≥ x̄(t) and t ≥ 0

λx(x̄(t), t) = 0 for t ≥ 0

λx(0, t) = 0 for t ≥ 0

The conditions for x̄ are:

• We look for x̄(·) to be continuous t ≥ 0.

Conditions for m:

• We look for m(·, t) to be continuous for all x ∈ [0, U ] and t ≥ 0.

• We look for m(·, t) to be C2 for all x ∈ [0, x̄(t)], and t ≥ 0.

• We look for m(x, ·) to be C1 for all x ∈ [0, x̄(t)], and t ≥ 0.

• The initial boundary condition for m is m(x, 0) = 0 for all x ∈ [0, U ]

Conditions for λ:

• We look for λ(·, t) to be C1 for all x ∈ [0, U ].

• We look for λ(·, t) to be C2 for all x ∈ [0, x̄(t)], and t ≥ 0.

• We look for λ(x, ·) to be C1 for all x ∈ [0, x̄(t)], and t ≥ 0.

• The final boundary for λ is λ(x, T ) = 0 for all x ∈ [0, U ] (T may be +∞).
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D.4 Solution of the Stationary Planning Problem

The solution for λ̃ of the form

λ̃(x) = x
θ0 + θnNss

ρ
+
θn
ρ
Zssx+ C1e

ηx + C2e
−ηx

for η =
√

2ρ/σ2, and

θ0 + θnNss

ρ
+ η(C1e

ηx̄ss − C2e
−ηx̄ss) = 0

θ0 + θnNss

ρ
+ η(C1 − C2) = 0

Thus, given θ0+θnNss, and x̄ss, the constants (C1, C2) are the solution of two linear equations.

Moreover, the values of A1, A2 are proportional to θ̃ss given by

θ̃ss ≡
θ0 + θnNss

ρ
= η(C2 − C1) = η(C2e

−ηx̄ss − C1e
ηx̄ss)

Let C̃i ≡ Ci/θ̃ss. We can write:

1 = η(C̃2 − C̃1) = η(C̃2e
−ηx̄ss − C̃1e

ηx̄ss)

which has solution:

C̃1 =
1

η

(1− e−ηx̄ss)

(e−ηx̄ss − eηx̄ss)

C̃2 =
1

η

(1− eηx̄ss)

(e−ηx̄ss − eηx̄ss)

Using value matching we get:

ηx̄ss +
ηθn

ρθ̃ss
Zss + η(C̃1e

ηx̄ss + C̃2e
−ηx̄ss) =

η

θ̃ss
c

Letting y ≡ ηx̄ss we can write

ψ̃(y) ≡ y + η(C̃1e
y + C̃2e

−y) + η
θn

ρθ̃ss
Zss
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Using ηC̃2 = 1 + ηC̃1 and the definition of C̃1 we get

ψ̃(y) ≡ y + e−y − (1− e−y)

(ey − e−y)
(ey + e−y) + η

θn

ρθ̃ss
Zss

We have the following properties:

1. ψ̃(0) = η θn
ρθ̃ss

Zss

2. ψ̃′(y) = e2y+1
(ey+1)2

so ψ̃′(0) = 1
2
, ψ̃′(∞) = 1, and ψ̃′′(y) > 0,

3. ψ̃(y) = y
2
+ y3

24
+ o(y4) + η θn

ρθ̃ss
Zss and limy→∞

ψ̃(y)−y−η θn
ρθ̃ss

Zss

y
= 0

For fixed 0 < η <∞ and small c using the first order approximation:

x̄ss = 2

(
c

θ̃ss
− θn

ρθ̃ss
Zss

)
For the case when σ is small (i.e., η is large) we find:

x̄ss =
c

θ̃ss
+

σ√
2ρ

− θn

ρθ̃ss
Zss

Defining γ =
√

2ν/σ2, for the uniform case we have:

Nss = 1−
∫ x̄ss(Nss)

0

m̃(s;Nss)dx

= 1−
∫ x̄ss

0

1

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
dx

= 1− x̄ss
U

+
(eγx̄ss − e−γx̄ss)

γU (eγx̄ss + e−γx̄ss)

and

Zss = U/2−
∫ x̄ss(Nss)

0

xm̃(s;Nss)dx

= U/2−
∫ x̄ss

0

x

U

[
1− (eγx + e−γx)

(eγx̄ss + e−γx̄ss)

]
dx

= U/2− x̄2ss
2U

+
1

U (eγx̄ss + e−γx̄ss)

∫ x̄ss

0

(
xeγx + xe−γx

)
dx

= U/2− x̄2ss
2U

+
x̄

γU

(eγx̄ss − e−γx̄ss)

(eγx̄ss + e−γx̄ss)
+

1

γ2U

2

(eγx̄ss + e−γx̄ss)
− 1

γ2U
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D.5 Perturbation and Stability of Invariant Distribution

In this section we analyze the linearization of the planning problem around its stationary

distribution. This linearization is analogous to the one for the equilibrium in Section 4.

We approximate x̄(t) = X P (N,Z)(t) by taking the directional derivative (Gateaux) with

respect to arbitrary perturbations n of a constant path N , and z of a constant path Z. In

particular, we consider paths defined by N(t) = Nss + ϵ n(t) and Z(t) = Zss + ϵ z(t) around

the stationary value Nss and Zss. We will denote this Gateaux derivative by ȳ.

Proposition 4. Let λT be equal to the stationary value function λ̃ corresponding to that

invariant distribution. Let n : [0, T ] → R and z : [0, T ] → R be two arbitrary perturbations.

Then

ȳ(t) ≡ lim
ϵ↓0

XP(Nss + ϵn, Zss + ϵz; λ̃)(t)−X P (Nss, Zss; λ̃)(t)

ϵ

=

∫ T

t

Gyn(τ − t)n(τ)dτ +

∫ T

t

Gyz(τ − t)z(τ)dτ

where

Gyn(τ − t) =
θn

λ̃xx(x̄ss)

∞∑
j=0

cje
−ψj(τ−t)n(τ)dτ

Gyz(τ − t) =
2θn

λ̃xx(x̄ss)x̄ss

∞∑
j=0

cje
−ψj(τ−t)z(τ)dτ

and ψj, cj, and γ are defined as in Lemma 6.

Now we turn to the perturbation for the inframarginal value Z as a function of the

thresholds and of a perturbation of the initial condition. We approximate Z(t) = Z(x̄,m0)(t)

by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation y of

a constant path x̄ and a perturbation ω on the invariant distribution m̃. In particular, we

consider paths defined by x̄(t) = x̄ss + ϵ ȳ(t) around the invariant threshold xss, and around

the invariant distribution m0(x) = m̃(x) + ϵω(x). We will denote this Gateaux derivative by

z.

Proposition 5. Let m̃ be the corresponding invariant distribution of non-adopters for

the planner. Let ω : [0, x̄ss] → R be an arbitrary perturbation to the distribution, and let
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ȳ : [0, T ] → R be an arbitrary perturbation of the threshold. Then

z(t) ≡ lim
ϵ↓0

Z(x̄ss + ϵy; m̃+ ϵw)(t)−Z(x̄ss; m̃)(t)

ϵ

= z0(ω)(t) +

∫ t

0

Hzy(t− s)ȳ(s)ds

where

z0(ω)(t) ≡ −
∞∑
j=0

x̄2ss(πj +
1
2
− cos(jπ))

π(1
2
+ j)

⟨φj, ω⟩
⟨φj, φj⟩

e−µjt and

Hzy(q) = m̃x(x̄ss)σ
2

∞∑
j=0

ηje
−µj q

where φj, m̃x, µj and γ are defined as in Lemma 7.

Thus we can write Z(t) = Zss + ϵz(t) + o(ϵ). This formula has the effect of two per-

turbations. One is the perturbation on the initial condition m0 given by ω, whose effect is

in the term z0(ω)(t). Alternatively, z0(ω)(t) is the effect at time t on the path Z(t) of a

perturbation of the initial condition keeping the threshold rule x̄ fixed. As in the case of

n0 we can specialize ω by Dirac-delta function δx̂, so that we concentrate the perturbation

around a value x = x̂. The proof of this can be found in Appendix D.6.1.

Theorem 4. Let x̄ss be the invariant threshold of the planner problem, with its corre-

sponding Nss, Zss, and let m̃ be the corresponding invariant distribution of non-adopters. Let

m0(x) = m̃(x) + ϵω(x). Let λT be equal to the stationary value function λ̃. The linearized

equilibrium must solve

ȳ(t) = ȳ0(t) + Θ̃

∫ T

0

K̃(t, s)ȳ(s)ds where (46)

ȳ0(ω)(t) ≡
∫ T

t

Gyn(τ − t)n0(ω)(τ)dτ +

∫ T

t

Gyz(τ − t)z0(ω)(τ)dτ

where n0 is derived in Lemma 7, z0 is derived in Proposition 5, Θ̃ ≡ θnm̃x(x̄ss)σ2

λ̃xx(x̄ss)x̄ss
and where

the kernel K̃ is given by

K̃(t, s) =
∞∑
j=0

∞∑
i=0

(cj + ci)e
ψjt+µis

(
e−(ψj+µi)max{t,s} − e−(ψj+µi)T

ψj + µi

)
> 0

We have that LipK̃ ≤
(
x̄2ss
σ2

)2
. Furthermore, if Θ̃ LipK̃ < 1 there exists a unique bounded
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solution to equation (46) which is the limit of

ȳ(t) =
[
I + Θ̃K̃ + Θ̃2K̃2 + . . .

]
ȳ0(ω) where K̃(g)(t) ≡

∫ T

0

K̃(t, s)g(s)ds

and where K̃j+1(g)(t) ≡
∫ T
0
K̃(t, s) K̃j(g)(s) ds for any bounded g : [0, T ] → R. The operator

K̃ is self-adjoint, and positive definite.

We again consider a perturbation to the invariant density of non-adopters. In this case,

we let m0(x) be the invariant distribution of no-adopters of the problem, so that the shock

resembles starting an equilibrium with lower adoption than that prescribed by the planning

solution.

D.6 Perturbation of the Planning Problem

We consider the planning problem with {x̄(t, ϵ), N(t, ϵ), λ(x, t, ϵ),m(x, t, ϵ)}. We again lin-

earize this equilibrium with respect to ϵ and evaluate it at ϵ = 0. We differentiate λ(x, t, ϵ)

with respect to ϵ at each (x, t) to obtain ℓ(x, t) ≡ ∂
∂ϵ
λ(x, t, ϵ)

∣∣
ϵ=0

which solves the following

p.d.e

ρℓ(x, t) = xθnn(t) + θnz(t) +
σ2

2
ℓxx(x, t) + ℓt(x, t) (47)

for x ∈ [0, x̄ss] and t ∈ [0, T ] and where z(t) ≡ ∂
∂ϵ
Z(t, ϵ)

∣∣
ϵ=0

and n(t) ≡ ∂
∂ϵ
N(t, ϵ)

∣∣
ϵ=0

. The

boundary conditions are:

ℓ(x, T ) = 0

ℓx(0, t) = 0

ℓ(x̄ss, t) = 0

λ̃xx(x̄ss)ȳ(t) + ℓx(x̄ss, t) = 0 (48)

Proposition 6. The solution for the KBE equation for ℓ is given by

ℓ(x, t) =
∞∑
j=0

φj(x)ℓ̂(t) for x ∈ [0, x̄ss] and t ∈ [0, T ]
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where for all j = 1, 2, ... we have:

ℓ̂(t) =

∫ T

t

e−ψj(τ−t))ŝj(τ)dτ for t ∈ [0, T ]

ŝj(t) = −θnn(t)
⟨φj, x⟩
⟨φj, φj⟩

− θnz(t)
⟨φj, 1⟩
⟨φj, φj⟩

for t ∈ [0, T ]

φj(x) = sin

((
1

2
+ j

)
π

(
1− x

x̄ss

))
for x ∈ [0, x̄ss]

⟨φj, h⟩ ≡
∫ 1

0

h(x)φj(x)dx

ℓ̂(T ) = 0

ψj = ρ+
1

2
σ2

(
π(1

2
+ j)

x̄ss

)2

The proof can be done by verifying that the equation hold at the boundaries, that for

t > 0 the p.d.e holds in the interior since

ℓ̂′j(t) = ψj ℓ̂(t) + ŝj(t) for t ∈ [0, T ] and j = 1, 2, ...

and since {φj(x)} form an orthogonal bases for functions, and finally that the boundary

holds at t = 0 for x ∈ [0, x̄ss].

Note that the derivative of the solution for λ is

ℓx(x̄ss, t) = −θn
∫ T

t

∞∑
j=0

cje
−ψj(τ−t)n(τ)dτ − θn

2

x̄ss

∫ T

t

∞∑
j=0

e−ψj(τ−t)z(τ)dτ

where cj = 2
(
1− cos(πj)

π(j+ 1
2
)

)
.

D.6.1 Perturbation Analysis of the Planning Problem

Recall that from equation (48), ȳ(t) is equal to

ȳ(t) =
−ℓx(x̄ss, t)
λ̃xx(x̄ss)

=

∫ T

t

θn

λ̃xx(x̄ss)

∞∑
j=0

cje
−ψj(τ−t)n(τ)dτ +

∫ T

t

2θn

λ̃xx(x̄ss)x̄ss

∞∑
j=0

cje
−ψj(τ−t)z(τ)dτ

=

∫ T

t

Gyn(τ − t)n(τ)dτ +

∫ T

t

Gyz(τ − t)z(τ)dτ (49)
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The expression for n(t) is given by equation (45) and can be written as

n(t) = n0(t) +

∫ t

0

Hny(t− s)ȳ(s)ds.

where as before n0(t) ≡ −
∑∞

j=0
x̄ss

π( 1
2
+j)

⟨φj ,ω⟩
⟨φj ,φj⟩e

−µjt. We can obtain a similar expression for

z(t) using the solution for p(x, t) as

z(t) = −
∫ x̄ss

0

xp(x, t)dx

= −
∞∑
j=0

p̂j(t)

∫ x̄ss

0

xφj(x)dx

= −
∞∑
j=0

x̄2ss(π(j +
1
2
)− cos(jπ)

(π(1
2
+ j))2

⟨φj, ω⟩
⟨φj, φj⟩

e−µjt + m̃x(x̄ss)σ
2

∫ t

0

∞∑
j=0

π(j + 1
2
)− cos(jπ))

π(j + 1
2
)

e−µj(t−τ)ȳ(τ)dτ

= z0(t) +

∫ t

0

Hzy(t− s)ȳ(s)ds

where z0(t) ≡ −
∑∞

j=0
cj
2

x̄2ss
π(j+ 1

2
)

⟨φj ,ω⟩
⟨φj ,φj⟩e

−µjt and cj ≡
(
1− cos(πj)

π(j+ 1
2
)

)
. Then, equation (49) can

be written as

ȳ(t) =

∫ T

t

Gyn(τ − t)

(
n0(τ) +

∫ t

0

Hny(τ − s)ȳ(s)ds

)
dτ

+

∫ T

t

Gyz(τ − t)

(
z0(τ) +

∫ t

0

Hzy(τ − s)ȳ(s)ds

)
dτ

=

∫ T

t

Gyn(τ − t)n0(τ)dτ +

∫ T

t

∫ t

0

Gyn(τ − t)Hny(τ − s)ȳ(s)ds dτ

+

∫ T

t

Gyz(τ − t)z0(τ)dτ +

∫ T

t

∫ t

0

Gyz(τ − t)Hzy(τ − s)ȳ(s)ds dτ

= ȳ0(t) +

∫ T

0

M(t, s)ȳ(s)ds

where

ȳ0(t) ≡
∫ T

t

Gyn(τ − t)n0(τ)dτ +

∫ T

t

Gyz(τ − t)z0(τ)dτ
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and∫ T

0

M(t, s)ȳ(s)ds ≡
∫ T

t

∫ t

0

Gyn(τ − t)Hny(τ − s)ȳ(s)ds dτ +

∫ T

t

∫ t

0

Gyz(τ − t)Hzy(τ − s)ȳ(s)ds dτ

=

T∫
0

T∫
max{t,s}

Gyn(τ − t)Hny(τ − s)ȳ(s)ds dτ +

T∫
0

T∫
max{t,s}

Gyz(τ − t)Hzy(τ − s)ȳ(s)ds dτ

with

Gyn(w) =
θn

λ̃xx(x̄ss)

∞∑
j=0

cje
−ψj(w)

Gyz(w) =
2θn

λ̃xx(x̄ss)x̄ss

∞∑
j=0

e−ψj(w)

Hzy(q) =
m̃x(x̄ss)σ

2

2

∞∑
j=0

cje
−µj(q)

Hny(q) =
m̃x(x̄ss)σ

2

x̄ss

∞∑
j=0

e−µj(q)

where e−rqGyn(w)Hny(q) = Gyz(w)Hzy(q)e
−rq. Using the definitions of n0(t) and z0(t) we

first find the value of ȳ0(t) as

ȳ0(t) ≡
∫ T

t

Gyn(τ − t)n0(τ)dτ +

∫ T

t

Gyz(τ − t)z0(τ)dτ

=
−θn

λ̃xx(x̄ss)

∫ T

t

∞∑
j=0

∞∑
i=0

cj
x̄ss

π(1
2
+ i)

⟨φi, ω⟩
⟨φi, φi⟩

e−ψj(τ−t)e−µiτdτ

+
−θn

λ̃xx(x̄ss)

∫ T

t

∞∑
j=0

∞∑
i=0

ci
x̄ss

π(1
2
+ i)

⟨φi, ω⟩
⟨φi, φi⟩

eψjte−ψj(τ−t)e−µiτdτ

=
−θn

λ̃xx(x̄ss)

∞∑
j=0

∞∑
i=0

(cj + ci)
x̄ss

π(1
2
+ i)

⟨φi, ω⟩
⟨φi, φi⟩

eψjt
(
e−(ψj+µi)t − e−(ψj+µi)T

ψj + µi

)
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Then, we find

∫ T

0

M(t, s)ȳ(s)ds =

T∫
0

 T∫
max{t,s}

Gyn(τ − t)Hny(τ − s)ȳ(s)dτ +

T∫
max{t,s}

Gyz(τ − t)Hzy(τ − s)ȳ(s)dτ

 ds

= Θ̃(x̄ss)

∫ T

0

∫ T

max{t,s}

∞∑
j=0

∞∑
i=0

cje
−ψj(τ−t)e−µi(τ−t)ȳ(s)dτ ds

+ Θ̃(x̄ss)

∫ T

0

∫ T

max{t,s}

∞∑
j=0

∞∑
i=0

cie
−ψj(τ−t)e−µi(τ−t)ȳ(s)dτ ds

where we let Θ̃(x̄ss) ≡ θnm̃x(x̄ss)σ2

λ̃xx(x̄ss)x̄ss
. Solving the integrals we get

∫ T

0

M(t, s)ȳ(s)ds = Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

cje
ψjt+µis

(
e−(ψj+µi)max{t,s} − e−(ψj+µi)T

ψj + µi

))
ds

+ Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

cie
ψjt+µis

(
e−(ψj+µi)max{t,s} − e−(ψj+µi)T

ψj + µi

))
ds

= Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

(cj + ci)e
ψjt+µis

(
e−(ψj+µi)max{t,s} − e−(ψj+µi)T

ψj + µi

))
ds

= Θ̃(x̄ss)

∫ T

0

K̃(t, s)ds.

Thus, equation (49) can be written as

ȳ(t) = ȳ0(t) + Θ̃(x̄ss)

∫ T

0

K̃(t, s)ȳ(s)ds

Notice also that since e−rtM(t, s) = e−rsM(t, s)

∫ T

0

e−rtM(t, s)ȳ(s)ds = Θ̃(x̄ss)

∫ T

0

(
∞∑
j=0

∞∑
i=0

(cj + ci)e
µjt+µis

(
e−(r+µj+µi)max{t,s} − e−(r+µj+µi)T

µj + µi + r

))
ds

E A “Pure” Learning Model

In this section, we develop a model with random diffusion of the technology across agents.

Agents can be either uninformed about the technology, or informed about it. If they are

informed, they can decide to pay a cost c and adopt it. Newborn agents start as uninformed,

and become informed by randomly matching with informed agents. Once an agent adopts
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the technology her flow benefit depends on the idiosyncratic value of the random variable x,

but not on the size of the network, i.e., θn = 0.

The main conclusions are that the pure learning model differs from the model with strate-

gic complementarity in that:

1. it has a unique equilibrium, and a unique stable invariant distribution,

2. it has a logistic S shape adoption profile, provided the initial share of uninformed is

small enough,

3. the use of the technology for those that adopt depends only on the cohort, and not the

size of the network,

4. the equilibrium is constrained efficient: the optimal subsidy to use the technology is

zero.

Learning Setup. We follow the canonical notation for an “SIR” model and assume that the

population, normalized to have measure 1, is split between the uninformed, whose measure

we denote by S(t), and the informed, which have measure I(t), so that I(t)+S(t) = 1. Those

that are informed can be split in two groups, those that have adopted the technology, with

measure N(t), and those informed that have not adopted M(t), so that I(t) =M(t) +N(t).

The main assumption about learning about the technology is that agents do not need to

use the technology to learn about it. In particular, agents that know about the technology

will randomly meet agents that don’t and transmit the information in such way. Recall that

among the I(t) informed agents, only a N(t) have adopted, and M(t) are informed but have

decided not to adopt.

Optimal Adoption. Now we turn to the decision of agents. The uninformed agents have

no decision to make. The decision problem of those that are informed is similar to the

stationary problem in our model with strategic complementarities.

The value of an agent that already has adopted the technology is

ρa(x) = θ0x+
σ2

2
axx(x) for x ∈ [0, U ]

with boundaries ax(0) = ax(U) = 0 The value function for an agent that is informed is:

ρv(x) = max

{
σ2

2
vxx(x) , ρ(a(x)− c)

}
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with time invariant threshold x̄ < U solving, and boundary at zero:

vx(x̄) = ax(x̄) and v(x̄) = a(x̄)− c and vx(0) = 0

The solution of v and a are identical to the stationary solutions of the baseline model ṽ

and ã where we set θn = 0. Likewise the solution for x̄ is the same as the value x̄ss for the

model with θn = 0.

Evolution of Distributions. Now we turn to the description of the distribution of agents

across states. We let s(x, t) the density of those uninformed at t with x, and m(x, t) the

density of those informed at t with x and that have not adopted yet. First we characterize

g which satisfies:

st(x, t) =
σ2

2
sxx(x, t)− (ν + β(S(t))) s(x, t) + ν

1

U
all t ≥ 0 and x ∈ [0, U ]

with boundary conditions given by reflections at the boundary, i.e., 0 = sx(0, t) = sx(U, t) all

t ≥ 0 and initial condition independent of x:

s(x, 0) = s0 all x ∈ [0, U ]

In this case S(t) is the total measure of uninformed agents at time t, and β(·) is a function

that gives the probability per uninformed of becoming informed:

S(t) =

∫ U

0

s(x, t)dx

We assume that β(·) is given by

β(S) = β0 (1− S) = β0 I for some constant β0 > ν > 0

The interpretation is that each agent has β0 meeting per unit of time, and that a fraction

1− S are with those informed of the technology.

We will return to solve for S and I below. Now we turn to the law of motion for m is:

mt(x, t) =
σ2

2
mxx(x, t) + β(S(t))s(x, t)− νm(x, t) all t ≥ 0 and x ∈ [0, x̄]

m(x, t) = 0 all t ≥ 0 and x ∈ [x̄, U ]

Continuity of m implies that m(x̄, t) = 0 all t ≥ 0. The reflecting barrier of x at zero implies
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0 = mx(0, t) for all t ≥ 0.

Comparing with the baseline model with constant x̄, the evolution of the density m has

one main difference. Instead of having the constant inflow ν/U , it has a time varying, and

smaller, inflow β(S(t))s(x, t). This smaller inflow, everything else the same, can substantially

retard the adoption.

We define the total number that are uninformed as:

M(t) ≡
∫ x̄

0

m(x, t)dx ≤ I(t) = 1− S(t)

The initial condition that the density of those that have not adopted is smaller than the

density of those that are informed, i.e.: 0 ≤ M(0) ≤ I(0) all x ∈ [0, U ]. Note that by

integrating across x and using the boundary conditions:

Mt(t) =

∫ x̄

0

mt(x, t)dx =
σ2

2
mx(x̄, t) + β(S(t))S(t)

x̄

U
− νM(t) all t ≥ 0 and x ∈ [0, x̄]

We are interested in: N(t) = 1− S(t)−M(t), which using the previous equations gives:

Nt(t) = −σ
2

2
mx(x̄, t)− νN(t) + β(S(t))S(t)

(
1− x̄

U

)
for all t ≥ 0

with initial condition N(0) =
(
1− x̄

U

)
I(0).

Note that since m(x, t) > 0 for x < x̄ and m(x̄, t) = 0, then mx(x̄, t) < 0. The next

proposition rewrite this expression which it is useful to interpret the determinants of the

dynamics of N(t).

Proposition 7. Assume that s0(x) = S0/U for all x ∈ [0, U ], and that β(S) = β0(1−S).

Then we can write N(t) as function of path I(t) and m(x̄, t) and the threshold x̄:

N(t) = I(t)
(
1− x̄

U

)
+

∫ t

0

e−ν(t−τ)
[
−σ

2

2
mx(x̄, τ)

]
dτ

The expression in the right hand side of N(t) in Proposition 7 has the following interpre-

tation. The term I(t)
(
1− x̄

U

)
has the fraction of those informed with values of x above the

threshold x̄. The second term takes into account the past flows of agents that were informed,

whose value of x went from below x̄ to higher than x̄.

Solving for Path of N(t),M(t), I(t), S(t) Given x̄. The solution is recursive: we first

solve for S(t) and I(t), and then using the path of I(t) we solve for N(t). This is done in the
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next two propositions.

Proposition 8. Assume that β(S) = β0(1 − S) for β0 > ν. Furthermore assume that

s0(x) = S0/U for all x ∈ [0, U ]. For a given I(0) we have that the unique solution of

İ(t) = β0I(t)

[(
1− ν

β0

)
− I(t)

]
is given by

I(t) = 1− S(t) =

(
1− ν

β0

)
e(β0−ν)t(

1− ν
β0

)
I(0)

− 1 + e(β0−ν)t

Thus, if 0 < I(0) < 1 − ν
β0
, then I(t) converges monotonically to Iss = 1 − ν

β0
∈ (0, 1). If

I(0) < Iss, then

I(t) =

 is convex in t if t < log((Iss−I(0))/I(0))
β0−ν or I(t) < Iss

2

is concave in t if t > log((Iss−I(0))/I(0))
β0−ν or I(t) > Iss

2
.

As shown in Proposition 8, when I(0) is small, then I(t) displays a “logistic” type of path

of technology adoption, but I(t) is only the population that can adopt. We characterize the

number of adopters in the next proposition.

Proposition 9. Assume that s0(x) = S0/U for all x ∈ [0, U ]. Take the path I(t) as

given, and the optimal threshold x̄ < U . Then the unique solution of m(x, t) is:

m(x, t) =
∞∑
j=0

φj(x)b̂j(t) where φj(x) = sin
(
(j + 1

2
)π
(
1− x

x̄

))
b̂j(t) =

2

π(j + 1
2
)

(
e−µjt

I(0)

U
+ β0

∫ t

0

e−µj(t−τ)
I(τ) (1− I(τ))

U
dτ

)
and µj = ν +

(
(j + 1

2
)π
x̄

)2
and thus N(t) = I(t)−M(t) is given by:

N(t) = I(t)− x̄
U

(
H(t)I(0) + β0

∫ t

0

H(t− τ)I(τ) (1− I(τ)) dτ

)
where

H(z) ≡
∞∑
j=0

ωje
−µjz with ωj ≡

2(
π(j + 1

2
)
)2 > 0 and

∞∑
j=0

ωj = 1 .
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Combining the expression for N(t) in Proposition 9 with the path of I(t) solved for

in Proposition 8 we obtain an explicit solution to N(t). Next we analyze the invariant

distribution in this model, which is the value at which it tends as t → ∞. We denote m̃

the density for m which satisfies: νm̃(x) = σ2

2
m̃xx(x) +β0(1 − ν

β0
) ν
β0

x̄
U

for all x ∈ [0, x̄] and

m̃x(x̄) = 0 and m̃(x̄) = 0. The next proposition gives the solution for the distribution m̃, as

well as the stationary number of adopters Nss.

Proposition 10. Assume that s0(x) = S0/U for all x ∈ [0, U ], that x̄ < U , β(S) =

β0(1− S), and that β0 > ν > 0. Then the invariant density m̃ is given by:

m̃(x) = (1− ν
β0
) 1
U

(
1− cosh(γx)

cosh(γx̄)

)
where γ =

√
2ν/σ and thus

Nss = Iss −
∫ x̄

0

m̃(x)dx = (1− ν
β0
)

[
1− x̄

U

(
1− tanh(γx̄)

γx̄

)]
(50)

It is interesting to see that even if I(0) = Iss ≡ 1− ν
β0
, then N(0) < Nss, and convergence

will take time. In words, even if all agents are informed about the technology it takes time for

the selection process to yield Nss. In particular equation (50) implies that Nss > Iss(1− x̄
U
),

since among the adopters there are agents who had x ≥ x̄ in the past and currently have

x < x̄.

Figure E2: Equilibrium paths of N and I of Pure Learning Model
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Slow learning, β0 = 2. Fast Learning, β0 = 10.

Figure E2 illustrates the main results of this section. The left and right panel differ in

the value of β0, with the left panel with a slow learning β0 = 2, and the right panel a high
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value, β0 = 10. In each panel we consider two initial condition for I(0): one with I(0) = Iss

(dotted lines), and with I(0) = Iss/100 (solid lines). The remaining parameters are all the

same. The paths for N are in blue, and the ones for A are in red. Focusing first in the

slow learning case (left panel), note that when I(0) is small, so that early on adoption is

restricted by the information about the technology, the fraction that adopt N(t) follows an

approximate logistic path, as explained above. Instead, if I(0) = Iss, then the path of N(t)

is concave in time, and starts at a high value at t = 0. In the case of fast learning, i.e., in

the right panel, the same dynamics of learning are also present, but in a much abbreviated

period of time.

Optimality of Equilibrium. The equilibrium path is constrained efficient. In particular,

if the planner can only give a subsidy to those that use the technology, then the optimal

subsidy is zero. This is because, given our assumptions about learning, such subsidy does

not affect the fraction of people that learn about the application. Furthermore, since we

assume that there is no complementary in the use of the technology, the individual decision

will coincide with the planner decision for x̄.

E.1 Proofs for the Learning Model

Proof. (Proposition 7) We start by integrating the differential equation for N to obtain

N(t) = e−νtN(0) +

∫ t

0

e−ν(t−s)
[
−σ

2

2
mx(x̄, s) + β(S(s))S(s)

(
1− x̄

U

)]
ds

N(0) =
(
1− x̄

U

)
I(0)

Using that İ(t) = β(S(t))S(t)− νI(t), so∫ t

0

e−ν(t−s)β(S(s))S(s)ds =

∫ t

0

e−ν(t−s)İ(t)ds+

∫ t

0

e−ν(t−s)νI(t)ds

Integrating by parts:∫ t

0

e−ν(t−s)β(S(s))S(s)ds = I(t)− I(0)e−νt −
∫ t

0

νe−ν(t−s)I(s)ds+

∫ t

0

e−ν(t−s)νI(t)ds

= I(t)− I(0)e−νt
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Thus:

N(t) = e−νt
(
1− x̄

U

)
I(0) +

∫ t

0

e−ν(t−s)
[
−σ

2

2
mx(x̄, s)

]
ds+

[
I(t)− I(0)e−νt

] (
1− x̄

U

)
= I(t)

(
1− x̄

U

)
+

∫ t

0

e−ν(t−s)
[
−σ

2

2
mx(x̄, s)

]
ds

□

Proof. (of Proposition 8) Integrating the p.d.e. for g we get:

St(t) ≡
∫ U

0

st(x, t)dx =
σ2

2

∫ U

0

sxx(x, t)dx− (ν + β(S(t)))

∫ U

0

s(x, t)dx+ ν

∫ U
0
dx

U

and using its boundary conditions at x = 0 and x = U :

St(t) = − (ν + β(S(t)))S(t) + ν all t ≥ 0

with initial condition:

s(0) = S0 for some constant 0 ≤ S0 = 1− I(0) ≤ 1

Since we assume that s0(x) is constant across x, i.e. if

s0(x) =
S0

U
all x ∈ [0, U ]

then the solution satisfies

s(x, t) =
S(t)

U
all t ≥ 0 for all x ∈ [0, U ]

Thus we obtain

S ′ = − (ν + β0(1− S))S + ν = (1− S) (ν − β0S)

= ν (1− S)

(
1− S

S∗

)
It is convenient to solve for the path of I, the fraction of agents informed of the technology,

I(t) + S(t) = 1 for all t ≥ 0, so:

I ′ = −I (ν − β0(1− I)) = β0I (Iss − I) where Iss = 1− ν

β0
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Let Ĩ = β0I, so that:

Ĩ ′ = Ĩ
(
Ĩss − Ĩ

)
= ĨssĨ − (Ĩ)2 where Ĩss = β0 − ν

Then we get that its solution is given by:

Ĩ(t) =
Ĩsse

Ĩsst

Ĩss
Ĩ(0)

− 1 + eĨsst

Note that

Iss
d

dt

Ĩsse
Ĩsst

Ĩss
Ĩ(0)

− 1 + eĨsst
= Ĩss

Ĩsse
Ĩsst

Ĩss
Ĩ(0)

− 1 + eĨsst
− Ĩsse

ĨsstĨsse
Ĩsst(

Ĩss
Ĩ(0)

− 1 + eĨsst
)2

= ĨssĨ(t)− (Ĩ(t))2

which verifies the answer. Using I = Ĩ/β0 we obtain the desired result.

□

Proof. (of Proposition 9) Given the path {S(t)} define

B(t) ≡ β(S(t))S(t) 1
U

We start with

m(x, t) =
∞∑
j=0

φj(x)b̂j(t) where φj(x) = sin
(
(j + 1

2
)π
(
1− x

x̄

))
Note that each φj satisfies the lateral boundary conditions for m(x, t) at x = 0 and x = x̄

for all t. Then the p.d.e. can be written as:

0 = mt(x, t)−
σ2

2
mxx(x, t) + νm(x, t)−B(t) or

0 =
∞∑
j=0

φj(x)
[
b̂′j(t) + νb̂j(t) +

(
(j + 1

2
)π
x̄

)2
bj(t)−B(t)

⟨φj ,1⟩
⟨φj ,φj ,⟩

]
or for each j = 0, 1, . . . :

b̂′j(t) = −
[
ν +

(
(j + 1

2
)π
x̄

)2]
bj(t) +B(t)

⟨φj ,1⟩
⟨φj ,φj ,⟩
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or letting µj =
(
(j + 1

2
)π
x̄

)2
b̂j(t) = b̂j(0)e

−µjt +
⟨φj ,1⟩
⟨φj ,φj ,⟩

∫ t

0

e−µj(t−s)B(s)ds

On the other hand {b̂j(0)} are given so that

M(0) =
x̄

U
I(0)

so that M(0) =
∫ x̄
0
m0(x)dx and if m0(x) does not depend on x we have M(0) = x̄m0(x):

m0(x) =
M(0)

x̄
=
I(0)

U

b̂j(0) =
⟨φj ,1⟩
⟨φj ,φj⟩

I(0)

U

which ensures:

∞∑
j=0

b̂j(0)φj(x) =
I(0)

U

so

b̂j(t) =
⟨φj ,1⟩
⟨φj ,φj⟩

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)
Finally,

⟨φj, 1⟩ =
x̄

π(j + 1
2
)
and ⟨φj, φj⟩ =

x̄

2

Thus,

b̂j(t) =
2

π(j + 1
2
)

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)
Thus, if we compute:

M(t) =

∫ x̄

0

m(x, t)dx =
∞∑
j=0

b̂j(t)

∫ x̄

0

φj(x)dx =
∞∑
j=0

b̂j(t)⟨φj, 1⟩
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substituting the expression for b̂j(t):

M(t) =
∞∑
j=0

(⟨φj ,1⟩)2

⟨φj ,φj⟩

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)

=
∞∑
j=0

2(
π(j + 1

2
)
)2 (e−µjt I(0)U +

∫ t

0

e−µj(t−s)B(s)ds

)

since

(⟨φj, 1⟩)2

⟨φj, φj⟩
=

(
x̄

π(j + 1
2
)

)2
1

x̄/2
= x̄

2(
π(j + 1

2
)
)2

To check, note that at t = 0:

M(0) = I(0)
x̄

U

∞∑
j=0

(⟨φj ,1⟩)2

⟨φj ,φj⟩ = I(0)
x̄

U

∞∑
j=0

2(
π(j + 1

2
)
)2

since 1 =
∑∞

j=0
2(

π(j+
1
2
)
)2 Thus

N(t) = I(t)−
∞∑
j=0

(⟨φj ,1⟩)2

⟨φj ,φj⟩

(
e−µjt

I(0)

U
+

∫ t

0

e−µj(t−s)B(s)ds

)

= I(t)−
∞∑
j=0

x̄
2(

π(j + 1
2
)
)2 (e−µjt I(0)U +

∫ t

0

e−µj(t−s)B(s)ds

)

= I(t)− x̄

U

∞∑
j=0

2(
π(j + 1

2
)
)2 (e−µjtI(0) + β0

∫ t

0

e−µj(t−s)I(s)(1− I(s))ds

)

So we can write:

N(t) = I(t)− x̄
U

(
∞∑
j=0

ωje
−µjtI(0) + β0

∫ t

0

∞∑
j=0

ωje
−µj(t−s)I(s) (1− I(s)) ds

)
where

ωj ≡
2(

π(j + 1
2
)
)2 > 0 and

∞∑
j=0

ωj = 1 .

Defining

H(z) ≡
∞∑
j=0

ωje
−µjz
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we can write:

N(t) = I(t)− x̄
U

(
H(t)I(t) + β0

∫ t

0

H(t− s)I(s) (1− I(s)) ds

)
where

ωj ≡
2(

π(j + 1
2
)
)2 > 0 and

∞∑
j=0

ωj = 1 .

□

Proof. (of Proposition 10) We can rewrite the o.d.e. for m̃ as:

m̃(x) = σ2

2ν
m̃xx(x) + (1− ν

β0
) 1
U
for all x ∈ [0, x̄]

The solution is given by a sum of particular solution, (1− ν
β0
) 1
U
, and two homogenous solutions.

The homogenous solutions are exponentials exp(±γx). The requirement that m̃x(0) = 0

implies that the coefficient that multiplies each of the exponentials has the same absolute

value but opposite sign, i.e., the two homogenous solutions combine into a cosh. Then,

imposing that m̃(x̄) = 0 we get:

m̃(x) = (1− ν
β0
) 1
U

(
1− cosh(γx)

cosh(γx̄)

)
where γ =

√
2ν/σ

Thus, using that
∫ x̄
0

cosh(γx)
cosh(γx̄)

= tanh(γx̄)
γ

we obtain the desired result.

□

F HJB Equations for a(x, t) and v(x, t)

Moreover, a(x, t) solves the p.d.e. and boundary conditions for all t ≥ 0:

ρa(x, t) = x(θ0 + θnN(t)) +
σ2

2
axx(x, t) + at(x, t) if x ∈ [0, U ]

ax(0, t) = ax(U, t) = 0

where the boundary conditions arise from our assumption of reflecting barriers. Throughout,

we assume 0 ≤ a(x, t) ≤ U(θ0+θn)
ρ

for all x, t, and 0 < c < U(θ0+θn)
ρ

.

Adoption Decision: The value function of an agent that has not adopted solves the fol-
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lowing variational inequality:

ρv(x, t) = max

{
σ2

2
vxx(x, t) + vt(x, t) , ρ (−c+ a(x, t))

}
for all t ≥ 0 and x ∈ [0, U ]. We conjecture that the optimal decision rule is given by a path

for the threshold x̄(t) ∈ (0, U) such so that, for each t ≥ 0, the following holds

ρv(x, t) =
σ2

2
vxx(x, t) + vt(x, t) if 0 ≤ x ≤ x̄(t)

v(x, t) = −c+ a(x, t) if x̄(t) ≤ x ≤ U

If v(·, t) is C1 we have the following boundary conditions for all t ≥ 0:

v(x̄(t), t) = a(x̄(t), t)− c Value Matching

vx(x̄(t), t) = ax(x̄(t), t) Smooth Pasting

vx(0, t) = 0 Reflecting

where the first one is the value matching condition, the second the smooth pasting condition,

and the last one arises from the reflecting barrier at x = 0.

G Empirical Appendix

G.1 Descriptive Figures and Summary Statistics: SINPE

The technology diffused gradually. The aggregate adoption of SINPE has grown at a con-

stant rate over time since its inception in 2015, as shown in Figure G1 using monthly data

on the total number of adopters.39 By 2021, close to 79% of the adult population in the

country owned a bank account, and over 60% of adults were SINPE subscribers who had

not deactivated their account. Moreover, the value of annual transactions in SINPE is ap-

proximately 10% of GDP. Thus, this setting has the unique feature of allowing us to study

the adoption of mobile payments in the entire population of the country, across many years

since the inception of the technology, and until it reached almost the universe of the country’s

adult population. The fact that adoption occurs gradually coincides with the dynamics of our

dynamic stochastic model, and rules out the deterministic case in which adoption happens

on impact.

39The figures include a vertical dashed line at the beginning of the COVID-19 pandemic (March 2020). As
shown, it did not dramatically change the adoption rate.

51



Figure G1: Users, Transactions, and Value of Transactions
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Notes: Panel (a) shows total active SINPE users. We include only active subscriptions by individuals, as users have the option

of deactivating their account. Panel (b) shows both total transactions in the application and total value of transactions by

individuals. Both figures include a vertical dashed line to mark the start of the COVID-19 pandemic (March 2020).

Figure G2: Average Transaction Size
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Notes: The figure shows the evolution of the average transaction size in SINPE.
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Figure G3: Transactions by Sender-Receiver Type
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Notes: Transactions are classified according to the type of user. Individuals correspond with Costa Rican adult citizens. Firms
correspond with formal enterprises.

Figure G4: Share of Transactions Between Types of Users (Weighted by Amount)
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Notes: The figure shows total number of SINPE transactions between four different types of users, as a share of all of their

transactions.
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Figure G5: Mean Number of Connections per User
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Figure G6: Average Age at the Time of Adoption
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Table G1: Mean Share of Transactions Within Network (2015-2021)

Neighborhood Firm Family Union of all three

0.65
Neighborhood 0.39
Firm 0.56 0.39
Family 0.50 0.58 0.25

Notes: We construct average shares using data from May 2015, when the technology was introduced, to December 2021. Shares
using data from the middle of the period (year 2018) only are shown in Table ??.

54



G.2 Evidence on Selection at Entry: Robustness

Table G2: Amount Transacted and Size of Network at Entry

Dependent variable: Amount transacted (IHS)

Size of Neighbors’ Network at Entry -5.805***
(0.014)

Size of Coworkers’ Network at Entry -2.663***
(0.013)

Size of Family Network at Entry -2.077***
(0.240)

Observations 7,135,126 163,050 6,742,411
R-squared 0.022 0.006 0.003
Network×Time/Cohort FE Yes Yes Yes

Notes: The dependent variable in this estimation is the amount transacted each month for each user, which we transform using
the inverse hyperbolic sine function. The coefficient describes the effect of increasing the share of an individual’s network who
had adopted the app at the time when she downloaded it. We run regressions using data from May 2015, when the technology
was introduced, to December 2021.

G.2.1 Details on Mass Layoffs

This section provides additional details on the choices made to construct the variables and

sample used for the analysis of mass layoffs in Section 6.2.

Definition of a Mass Layoff To define a mass layoff, we follow Davis and Von Wachter

(2011) and identify establishments with at least 50 workers that contracted their monthly

employment by at least 30% and which did not recover in the following 12 months. We define

a recovery as a firm which went back to its initial size (or above) within the following 12

months. Given this definition, the descriptive statistics of firms and workers impacted by a

mass layoff are reported in Table G3.

Exercises Based on Stayers We also conduct several exercises based on stayers, i.e.,

workers who remain at a firm after it experiences a mass layoff. Therefore, we refine the

definition above to exclude odd cases. Namely, the stayer must remain at the firm at least

6 months after the mass layoff (this applies to cases in which there was more than one wave

of layoffs) and we exclude cases where the firm had experienced an increase of at least 30%

in its workforce within the 6 months prior to the mass layoff (this applies to a few instances

of, for instance, seasonal hiring or project-specific hiring). It is worth noting that (i) these

refinements do not have any significant effect on the results for movers, and (ii) if anything,

these refinements lead to smaller results for stayers.
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Table G3: Mass Layoffs: Descriptive Statistics

Number of firms 292

Number of displaced workers
10,176

who had not adopted SINPE when fired

Number of displaced workers
917

who had adopted SINPE when fired

Average firm size 264 (989)
Median firm size 94

Average monthly wage pre-layoff, laid-off workers $688 ($732)
Average monthly wage pre-layoff, all workers $848 ($1,133)

Notes: Standard deviations for mean variables are reported in parenthesis. We consider layoffs that reduce in 30 workers or
more the size of firms with at least 50 workers, and limit the analysis to workers with a period of unemployment of 6 months
or less. We also exclude cases where the firm had experienced an increase of at least 30% in its workforce within the 6 months
prior to the mass layoff. Wages were calculated based on an exchange rate of 634 colones per dollar and the last month in which
workers were employed. We include mass layoffs which occurred between May 2015, when the technology was introduced, and
December 2021. The last row includes the average monthly wage pre-layoff for all workers who were employed at those firms
at the time of the mass layoff.

Definition of Variables We construct several variables that are used in equation (34).

We now provide more details on each of them.

• Adopti equals one if individual i adopted SINPE within 6 months after arriving at her

new firm, and zero otherwise. This variable is only computed for individuals who found

a job within 6 months of being fired. Results are robust to considering shorter unem-

ployment spells, including conducting the analysis using only job-to-job transitions.

• ∆N coworkers
i is the change between the share of coworkers who had adopted at the old

and the new employer. We compute this variable by calculating the difference between

(i) the share of adopters at the old firm on the last month in which the individual was

employed and (ii) the share of adopters at the new firm in month i, and considering

only months i after the individual was hired at the new firm.

• ∆ lnwagei corresponds with the change in the average wage (in logs) across 6 months

before the layoff and after the rehiring.

• ∆ ln sizei is the change in the number of workers (in levels) at the new firm versus the

old firm.

• date hiredi controls for the month in which individual i was hired by the new firm.

•
∑move

t=0

(
ln T̃t, new firm − ln T̃t, old firm

)
is the difference in the (log) historical transactions

made by workers at the new firm and the old firm prior to the move, which aims
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to control for factors, other than strategic complementarities, which might facilitate

adoption at the new vs. the old firm.

• ∆Covidi controls for the change in the cumulative COVID-19 cases (transformed using

the inverse hyperbolic sine function) in the individual’s neighborhood across the 6

months before the layoff and after the rehiring. This change is zero for pre-pandemic

years, thus, this variable is introduced using an inverse hyperbolic sine transformation,

as opposed to a logarithm.

The regression described in equation (33) relies on the same variables that we described

above, but also includes additional ones which we now describe.

• ∆ ln T̃i refers to the change in monthly intensity with which individual i used SINPE

within 6 months after arriving at her new firm compared with 6 months before being

fired. We only compute this variable for workers who had adopted SINPE more than

6 months before being fired, in order to attenuate any effect resulting from a “learning

curve.” We transform T̃i using the inverse hyperbolic sine function, as zeros are common

in the monthly data. Note that this inflates coefficients, particularly, for large values

of intensity, which are likely to appear when the left-hand-side variable describes the

total value (as opposed to the number) of transactions.

• cohorti controls for the month when individual i adopted SINPE. We include this

variable to attenuate any effect resulting from learning how to better use the app.

• ln
∑t

T̃i is the sum of all historical transactions made by agent i since she adopted the

app. This variable has no zeros by construction, as our definition of adoption is that the

individual has used the app at least once. Similarly to cohorti , the variable intends to

control for learning how to use the app thanks to having more people in your network

who have adopted it.
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H Quantitative Exercises

H.1 Elements of Identification

Figure H1: Sensitivity Analysis
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Notes: The graphs plot the relationship between the estimated parameters and several moments relevant for identification. We
set all parameters to their baseline estimates reported in Table 3 and represented by the vertical red line. Then, we move each
parameter around its estimated value holding the others constant. In panel (a) the moment reported is the autocorrelation and
the parameter is σ. In panels (b) and (c) the moment reported is the average number of transactions and the parameters are
θo and p respectively. In panel (d) the moment reported is the coefficient of the mass layoffs regression and the parameter is ϑ.

H.2 Variation Across Networks

In this section, we provide more details on the estimation of the model using variations across

networks. We show that the model is consistent with both high and low adoption networks

of firms, each implying a different path of adopters in equilibrium and a different optimal

path of adoption in the planning problem.

Specifically, we calibrate the model by targeting moments from individuals at firms whose

level of adoption is either above the median (high adoption) or below the median (low adop-

tion). To do this, first, we assume that the externally calibrated parameters are the same
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in both low and high adoption networks (i.e., ν, r, β0). We set these parameters to the

same values as in the benchmark calibration. Second, although the speed of information

diffusion is the same in the two networks (i.e., β0), we assume that more people knew about

the technology at entry in the high adoption networks than in the low adoption networks.

Specifically, we assume that in high adoption networks, 0.133 percent of workers were in-

formed about SINPE at its launch, while in low adoption networks, only 0.066 percent were

informed. This means we add (or subtract) a third of the people in each network relative to

the benchmark calibration.

We then calibrate θn, θ0, σ, and p using the simulated method of moments (SMM) for both

high and low adoption networks. As before, we choose the parameters to make the model

consistent with the distribution of transactions in the data and the mass layoff exercise. We

follow the same procedure as in our benchmark calibration. In particular, we target the

same data moments computed for different samples of workers, specifically those working at

firms whose average level of adoption is either above the median, Nhigh
ss = 0.96, or below the

median, N low
ss = 0.73, and we assume the same coefficient for the mass layoffs regressions in

both calibrations.

Table H1: Moments: Distribution of Transactions

Parameter Value Moment Data Model Data Model
Low High Low Low High High

σ 0.021 0.033 Mean Transactions 7.13 7.13 7.11 6.66
θ0 48.29 23.01 Median Transactions 6.34 6.94 6.38 6.46
p 0.0259 0.0029 Absolute Changes 3.83 2.90 3.53 2.70

ϑ ≡ θn
θ0

3.16 6.38 Coefficient Mass Layoffs 0.97 0.97 0.97 0.96

Autocorrelation Transactions 1.00 0.93 0.92 0.95

Table H1 shows the estimated parameters for both calibrations. We estimate a higher

level of strategic complementarities (i.e., higher ϑ) in networks with high adoption and a

higher convexity in the cost of conducting transactions in low adoption networks (i.e., higher

p). The estimated variance in both calibrations is slightly higher in networks with high

adoption. The table also shows that the calibrated models are quantitatively consistent with

the empirical distribution of transactions for high and low adoption samples.
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Figure H2: Path of Adopters (Long-Run)

(a) Path of N(t) (b) Path of I(t)

Notes: Panel (a) shows the share of adopters, N(t), predicted by the model under our baseline calibration, high adoption, and
low adoption calibrations. Panel (b) shows the share of informed agents, I(t), under each of the calibrations, respectively.

Panels (a) and (b) of Figure H2 show the paths of N(t) and I(t). Each panel includes

the results for the high and low adoption versions of the model relative to the results of

our benchmark calibration. In the high adoption network, 96% of the population adopts

the application. In the low adoption network, only 73% of the population adopts in the

stationary equilibrium. As before, most people are informed about the technology within the

first 7 years, and in the stationary distribution, approximately 98% of the population knows

about the application.

Figure H3: Planning Problem: Solution and Optimal Subsidy

(a) Optimal Path of Adopters (b) Optimal Subsidy

Notes: Panel (a) shows the optimal levels of adoption, N(t) (optimal), according to the solution of the planning problem under
the benchmark calibration, high adoption calibration, and low adoption calibration. Panel (b) shows the path of the ratio
between the optimal subsidy θnZ(t) and the flow benefit of the average adopter, Z(t)(θ0 + θnN(t)), under the benchmark
calibration, high adoption calibration, and low adoption calibration.
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Panel (a) of Figure H3 shows the optimal adoption path for high and low adoption

networks, relative to our benchmark calibration. As before, during the first three years after

the launch of the technology, the optimal level of adoption is similar to that of the high-

adoption equilibrium. Afterward, the optimal path of adopters from the planning problem

is higher. The optimal subsidy, shown in panel (b), increases over time as the externality

increases. Since θnN is higher in the high adoption network, the subsidy-to-benefit ratio in

this case is also higher. Nonetheless, in all versions of the model, the optimal subsidy pushes

the economy toward universal adoption.

H.3 Only Learning: ϑ = 0

In this section, we examine the behavior of a model without strategic complementarities.

Not surprisingly, if we keep all parameter at their baseline value and set θn = 0, the model

predicts much lower adoption at its stationary equilibrium, Nss = 0.19. The adoption in

this model is purely determined by the idiosyncratic benefits of the technology. Panel (a)

of Figure H4 shows that convergence to the stationary equilibrium takes longer in a model

without complementarities. Recall that the model matches the fraction of agents informed

about the technology three years after it was launched. Panel (b) suggests that in a pure

learning model, adoption would be much slower than that observed in the data. Panel (b)

also shows that the path of x̄(t) in the model with only learning is flat, which indicates there

is no selection in the adoption of the technology in contrast to what is observed in the data.

Importantly, this version of the model is constrained efficient: the optimal subsidy to use the

technology is zero.
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Figure H4: Path of Adopters - Only Learning (Short-Run and Long-Run)

(a) Model vs Data (b) Long-Run Path

Notes: Panel(a) compares the path of adopters in the model with θn = 0 and in the data. The solid red line shows the patterns
of diffusion of the technology in the median firm, where the percentile is calculated in the last period of the sample using the
share of individuals that had adopted the technology. The dashed red lines show the 10th and 90th percentiles. Panel (b) shows
the share of informed agents, I(t), the share of adopters, N(t), and the levels of x̄(t) predicted by the model under our baseline
calibration but setting θn = 0.

H.4 Comparative Statics

H.4.1 Stochastic Model: Short-Run

Figure H5: Adoption: N(t) and x̄(t)

(a) Comparative Statics: N(t) (b) Comparative Statics: x̄(t)

Notes: Panel (a) and (b) show how N(t) and x̄(t) change with ϑ and σ, keeping the rest of the parameters constant 7 years
after the technology was launched. The black diamonds indicate the levels of ϑ and σ in our baseline calibration.
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H.4.2 Stochastic Model: Planning Problem

Figure H6: Optimal Adoption: N(t) and Nss

(a) Comparative Statics: N(t) (b) Comparative Statics: Nss

Notes: Panel (a) shows how N(t) changes 7 years after the technology was launched with ϑ and σ, keeping the rest of the
parameters constant. The black diamonds indicate the levels of ϑ and σ in our baseline calibration. Panel (b) shows the same
comparative static for Nss.

63



H.4.3 Learning

Figure H7: Heterogeneity: β0

(a) Path of I(t) (b) Path of N(t)

(c) Path of x̄(t)

Notes: Panel (a) shows the share of informed agents, I(t). Panel (b) shows the share of adopters, N(t), and panel (c) shows
the path of x̄(t) in the model. Each panel shows paths for different values of β0.
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Figure H8: Heterogeneity β0: Planning Problem Solution and Optimal Subsidy

(a) Optimal Path of N(t) (b) Optimal Path of x̄(t)

(c) Optimal Path Subsidy

Notes: Panel (a) shows the optimal levels of adoption, N(t) (optimal) and panel (b) shows the path of x̄(t) (optimal) according
to the solution of the planning problem. Panel (c) shows the ratio between the optimal subsidy θnZ(t) and the flow benefit of
the average adopter, Z(t)(θ0 + θnN(t)). Each panel shows paths for different values of β0.
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